Measurement of bow tie profiles in CT scanners using a real-time dosimeter

Autor: Bruce R, Whiting, Joshua D, Evans, Andreea C, Dohatcu, Jeffrey F, Williamson, David G, Politte
Rok vydání: 2014
Předmět:
Zdroj: Medical physics. 41(10)
ISSN: 2473-4209
Popis: Several areas of computed tomography (CT) research require knowledge about the intensity profile of the x-ray fan beam that is introduced by a bow tie filter. This information is considered proprietary by CT manufacturers, so noninvasive measurement methods are required. One method using real-time dosimeters has been proposed in the literature. A commercially available dosimeter was used to apply that method, and analysis techniques were developed to extract fan beam profiles from measurements.A real-time ion chamber was placed near the periphery of an empty CT gantry and the dose rate versus time waveform was recorded as the x-ray source rotated about the isocenter. In contrast to previously proposed analysis methods that assumed a pointlike detector, the finite-size ion chamber received varying amounts of coverage by the collimated x-ray beam during rotation, precluding a simple relationship between the source intensity as a function of fan beam angle and measured intensity. A two-parameter model for measurement intensity was developed that included both effective collimation width and source-to-detector distance, which then was iteratively solved to minimize the error between duplicate measurements at corresponding fan beam angles, allowing determination of the fan beam profile from measured dose-rate waveforms. Measurements were performed on five different scanner systems while varying parameters such as collimation, kVp, and bow tie filters. On one system, direct measurements of the bow tie profile were collected for comparison with the real-time dosimeter technique.The data analysis method for a finite-size detector was found to produce a fan beam profile estimate with a relative error between duplicate measurement intensities of5%. It was robust over a wide range of collimation widths (e.g., 1-40 mm), producing fan beam profiles that agreed with a relative error of 1%-5%. Comparison with a direct measurement technique on one system produced agreement with a relative error of 2%-6%. Fan beam profiles were found to differ for different filter types on a given system and between different vendors.A commercially available real-time dosimeter probe was found to be a convenient and accurate instrument for measuring fan beam profiles. An analysis method was developed that could handle a wide range of collimation widths by explicitly considering the finite width of the ion chamber. Relative errors in the profiles were found to be less than 5%. Measurements of five different clinical scanners demonstrate the variation in bow tie designs, indicating that generic bow tie models will not be adequate for CT system research.
Databáze: OpenAIRE