Autor: |
Lukasz Mateusz, Szewczyk, Nikola, Brozko, Andrzej, Nagalski, Iris, Röckle, Sebastian, Werneburg, Herbert, Hildebrandt, Marta Barbara, Wisniewska, Jacek, Kuznicki |
Rok vydání: |
2016 |
Předmět: |
|
Zdroj: |
Glia |
ISSN: |
1098-1136 |
Popis: |
ST8SIA2 is a polysialyltransferase that attaches polysialic acid to the glycoproteins NCAM1 and CADM1. Polysialylation is involved in brain development and plasticity. ST8SIA2 is a schizophrenia candidate gene, and St8sia2 −/− mice exhibit schizophrenia‐like behavior. We sought to identify new pathological consequences of ST8SIA2 deficiency. Our proteomic analysis suggested myelin impairment in St8sia2 −/− mice. Histological and immune staining together with Western blot revealed that the onset of myelination was not delayed in St8sia2 −/− mice, but the content of myelin was lower. Ultrastructure analysis of the corpus callosum showed thinner myelin sheaths, smaller and irregularly shaped axons, and white matter lesions in adult St8sia2 −/− mice. Then we evaluated oligodendrocyte differentiation in vivo and in vitro. Fewer OLIG2+ cells in the cortex and corpus callosum, together with the higher percentage of undifferentiated oligodenroglia in St8sia2 −/− mice suggested an impairment in oligodendrocyte generation. Experiment on primary cultures of oligodendrocyte precursor cells (OPCs) confirmed a cell‐autonomous effect of ST8SIA2 in oligodendroglia, and demonstrated that OPC to oligodendrocyte transition is inhibited in St8sia2 −/− mice. Concluding, ST8SIA2‐mediated polysialylation influences on oligodendrocyte differentiation, and oligodendrocyte deficits in St8sia2 mice are a possible cause of the demyelination and degeneration of axons, resembling nerve fiber alterations in schizophrenia. GLIA 2016;65:34–49 |
Databáze: |
OpenAIRE |
Externí odkaz: |
|