Population pharmacokinetic modelling of darifenacin and its hydroxylated metabolite using pooled data, incorporating saturable first-pass metabolism, CYP2D6 genotype and formulation-dependent bioavailability

Autor: Kerbusch, Thomas, Wählby, Ulrika, Milligan, Peter A, Karlsson, Mats O
Jazyk: angličtina
Rok vydání: 2003
Předmět:
Popis: A model describing the population pharmacokinetics of darifenacin and its hydroxylated metabolite was developed from a combined analysis of 18 studies. The relationships between explanatory covariates and pharmacokinetic parameters were explored.Plasma concentration data from 337 individuals were pooled from 17 Phase 1 studies (median 28/33 darifenacin/metabolite observations per healthy subject), and one Phase 2 study (median 7/7 darifenacin/metabolite observations per subject) encompassing one intravenous and five different oral formulations (1-45 mg).Non-linear Mixed Effects Models (NONMEM Version VI) described both the population pharmacokinetics of darifenacin and its hydroxylated metabolite with a two-compartment disposition model with first order absorption. The values (mean +/- standard error of the mean) for clearance (CL) and volume of distribution of the central compartment were 40.2 +/- 2.0 l h-1 and 34.7 +/- 4.6 l h-1, respectively, in a typical male CYP2D6 homozygote-extensive metabolizer (Hom-EM). The absolute bioavailability (F) of darifenacin in a Hom-EM after doses of 7.5, 15 or 30 mg extended release formulation (CR) was 15, 19 and 25%, respectively. Factors influencing F were formulation (70-110% higher for CR compared with immediate release following equivalent daily doses), CYP2D6 genotype [heterozygote-extensive metabolizers (Het-EM) and poor metabolizers (PM) experienced 40 and 90%, respectively, higher exposure than Hom-EM irrespective of dose administered] and saturable first-pass metabolism (dose nonlinearity 1.05-1.43-fold). Race affected F, which was 56% lower in Japanese males. The CYP3A4 inhibitors ketoconazole and erythromycin increased F to approximately 100% and ketoconazole decreased CL by 67.5%. CL was 31% lower in females and 10% lower at night. Formulation affected the metabolite absorption/formation rate. Ketoconazole and erythromycin administration resulted in a decrease of 61.2 and 28.8% in exposure to the metabolite, respectively. The covariates race, gender and circadian rhythm accounted for only approximately half of the variability in the estimated exposures to darifenacin.The pooled analysis provided a descriptive integration of all characteristics and covariates of the pharmacokinetics of darifenacin and its metabolite, enabling interpolation and extrapolation of these key factors.
Databáze: OpenAIRE