Role of stress-activated mitogen-activated protein kinase (p38) in beta 2-integrin-dependent neutrophil adhesion and the adhesion-dependent oxidative burst

Autor: P A, Detmers, D, Zhou, E, Polizzi, R, Thieringer, W A, Hanlon, S, Vaidya, V, Bansal
Rok vydání: 1998
Předmět:
Zdroj: Journal of immunology (Baltimore, Md. : 1950). 161(4)
ISSN: 0022-1767
Popis: Bacterial LPS elicits both rapid activation of the stress-activated MAP kinase p38 in polymorphonuclear leukocytes (PMN) and rapid adhesion of the PMN to ligands for the leukocyte integrin CD11b/CD18. The functional correlation between these two events was examined. The time course for tyrosine phosphorylation of p38 in PMN in response to 10 ng/ml LPS in 1% normal human serum was consistent with participation in signaling for leukocyte integrin-dependent adhesion, with transient phosphorylation peaking at 10 to 20 min. The concentration dependence of p38 phosphorylation also resembled that for PMN adhesion, with1 ng/ml LPS eliciting a response. Phosphorylation was inhibited by mAb 60b against CD14, but not by mAb 26ic, a nonblocking anti-CD14. The function of p38 in integrin-dependent adhesion and the adhesion-dependent oxidative burst was tested using a specific inhibitor of p38, SB203580. SB203580 inhibited adhesion by diminishing the initial rate of adherence in response to both LPS and TNF, with a half-maximal concentration in the range of 0.1 to 0.6 microM. It did not, however, block adhesion in response to formyl peptide or PMA. The p38 inhibitor also blocked the adhesion-dependent oxidative burst with a half-maximal concentration similar to that for adhesion. Timed delivery of the compound during the lag phase preceding H2O2 production suggested that p38 kinase activity was required throughout the lag but not after the oxidase was assembled. These results suggest that p38 functions in PMN to signal leukocyte integrin-dependent adhesion and the subsequent massive production of reactive oxygen intermediates.
Databáze: OpenAIRE