Popis: |
Kaposi's sarcoma (KS) is the most frequent malignancy occurring in HIV-positive individuals. AIDS-KS is a more aggressive disease than the classical form, frequently having a rapid clinical course with numerous serious complications. Current systemic treatments for KS, such as chemotherapy and the administration of biological modifiers, are complicated by both the drug resistance of the tumor and the dose-limiting toxicity of the reagents. The relative accessibility of many KS lesions makes the disease a particularly attractive candidate for in vivo gene therapy protocols. In this regard, we are interested in delivering conditionally toxic suicide and/or antiangiogenic vectors to accomplish targeted cell death selectively in AIDS-KS cells. To this end, we examined both cationic lipid- and adenoviral-mediated DNA transfection methods. Using the firefly luciferase reporter gene, we optimized numerous variables known to be important in lipid-mediated DNA transfection, including lipid formulation, the amount of lipid and DNA, lipid/DNA ratio, and cell concentration. Under optimal transfection conditions, approximately 5-25% of KS cells expressed the introduced DNA sequences. Adenoviral-mediated DNA delivery was more efficient than lipid delivery in 4 of 5 primary KS cell lines. Two of the lines (RW248 and RW376) were transduced by adenovirus at frequencies approaching 100%; two cell lines (CVU-1 and RW80) gave efficiencies of 20-35%. Two immortalized KS cell lines (KS Y-1 and KS SLK) were poorly infected, giving a transduction efficiency of5%. These findings demonstrate that gene transfer into AIDS-KS cells is feasible, and suggest that vector strategies may be permissive for translating gene therapy approaches for the disease. |