Testosterone-mediated modulation of HERG blockade by proarrhythmic agents

Autor: Y M, Shuba, V E, Degtiar, V N, Osipenko, V G, Naidenov, R L, Woosley
Rok vydání: 2001
Předmět:
Zdroj: Biochemical pharmacology. 62(1)
ISSN: 0006-2952
Popis: Diverse drugs from many therapeutic classes exert cardiotoxic side effects by inducing torsades de pointes (TdP), a life threatening cardiac arrhythmia, which often results from drug interaction with HERG (human ether-a-go-go related gene) encoded K(+) channels, that generate an I(Kr) component of the delayed rectifier cardiac K(+) current. Men are known to be at a lower risk for drug-induced TdP than women suggesting a role of sex steroid hormones, androgens and estrogens, in modulation of drug sensitivity of cardiac K(+) channels, particularly those encoded by HERG. Here by using neuroleptic agents haloperidol, pimozide, and fluspirilene, all of which can induce TdP, and a steroid hormone-sensitive system Xenopus oocytes for HERG channels expression we show that testosterone is able to reduce HERG-blocking potency of neuroleptics. Haloperidol, pimozide, and fluspirilene inhibited HERG current with IC(50) of 1.36, 1.74, and 2.34 microM, and maximal block of 73%, 76% and 65%, respectively. The action of these neuroleptics was voltage-dependent, most consistent with an open-channel blocking mechanism. Pretreatment of HERG-expressing oocytes with 1 microM testosterone increased the IC(50) values to 2.73, 2.08, and 5.04 microM, reduced the maximal block to 65%, 59%, and 64%, and strongly diminished voltage-dependence of the blockade. Testosterone treatment per se produced about a 35% reduction of HERG current compared with untreated oocytes. Our data suggest that androgens may protect against the arrhythmogenic actions of some cardiotoxic drugs.
Databáze: OpenAIRE