Rapamycin inhibition of interleukin-2-dependent p33cdk2 and p34cdc2 kinase activation in T lymphocytes
Autor: | W G, Morice, G, Wiederrecht, G J, Brunn, J J, Siekierka, R T, Abraham |
---|---|
Rok vydání: | 1993 |
Předmět: |
DNA Replication
T-Lymphocytes Molecular Sequence Data Polyenes Protamine Kinase Protein Serine-Threonine Kinases Cell Line Cyclins CDC2 Protein Kinase CDC2-CDC28 Kinases Humans Amino Acid Sequence Sirolimus Cyclin-Dependent Kinase 2 Blotting Northern Cyclin-Dependent Kinases Recombinant Proteins Enzyme Activation Kinetics Chromatography Gel Interleukin-2 DNA Probes Oligopeptides Protein Kinases Cell Division Immunosuppressive Agents |
Zdroj: | The Journal of biological chemistry. 268(30) |
ISSN: | 0021-9258 |
Popis: | The immunosuppressant rapamycin (RAP) is a potent inhibitor of the entry of interleukin (IL)-2-stimulated T cells into S-phase. Earlier results indicated that RAP treatment arrested the growth of the murine IL-2-dependent T cell line CTLL-2 in late G1-phase. To explore further the interactions of RAP with the cell cycle control machinery in T cells, we examined the effects of RAP treatment on the activation of the cyclin-dependent kinases p34cdc2 and p33cdk2 in G1-phase CTLL-2 cells. Stimulation of factor-deprived cells with IL-2 led to the assembly of high molecular weight complexes containing active p34cdc2 and p33cdk2. The appearance of these complexes was explained, at least in part, by the association of both cyclin-dependent kinases with IL-2-induced cyclin A. RAP treatment profoundly inhibited both cyclin A expression and the appearance of active cyclin A-cyclin-dependent kinase complexes in IL-2-stimulated, late G1-phase CTLL-2 cells. Although p34cdc2 activation was largely dependent on association with cyclin A, a significant proportion of the active p33cdk2 pool was complexed with cyclin E. In contrast to cyclin A, the IL-2-induced accumulation of cyclin E in G1-phase cells was only partially suppressed by RAP, and cyclin E-p33cdk2 complexes were readily detected in drug-treated cells. These cyclin E-cyclin-dependent kinase complexes were nonetheless devoid of histone H1 kinase activity. The inhibitory effects of RAP on the activation of cyclin E- and cyclin A-associated cyclin-dependent kinases suggest that one or both events participate in the regulation of T cell entry into S-phase. |
Databáze: | OpenAIRE |
Externí odkaz: |