Untersuchung photorefraktiver Materialien mittels optischer Ptychographie
Autor: | Bernert, Constantin |
---|---|
Přispěvatelé: | Woike, Theo, Schroer, Christian, Technische Universität Dresden |
Jazyk: | němčina |
Rok vydání: | 2016 |
Předmět: |
Photorefraktivität
Photorefraktiver Effekt Lithiumniobat Ladungstransport Brechungsindexänderung elektrooptischer Effekt Pockels Effekt photovoltaischer Effekt photovoltaische Stromdichte Photovoltaik Ptychographie Interferometrie Holographie digitale Holographie Photorefractive Effect Lithium niobate charge transport charge migration refractive index change electrooptic effect Pockels effect photovoltaic effect photovoltaic current ptychography interferometry holography digital holography ddc:530 Fe linbo3 linbo3:fe charge transport chargetransport refractive index change refractive index changes space charge field electrooptic effect electrooptic Pockels effect photovoltaic effect photovoltaic current photovoltaic ptychography ptychographic interferometry interferometric holography holographic digital holography [photorefractive effect photorefractive photo refractive light-induced lightinduced light induced Lithium niobate Lithiumniobate LiNbO3 LiNbO3] Fe linbo3 linbo3:fe Ladungstransport Brechungsindexänderung Brechungsindexänderungen Raumladungsfeld elektrooptischer Effekt Pockels Effekt photovoltaischer Effekt photovoltaische Stromdichte photovoltaische photovoltaischer Photovoltaik photovoltaissches Ptychographie ptychographisch ptychographische ptychographisches Interferometrie interferometrisch interferometrische interferometrische Untersuchung interferometrisches Holographie holographisches holographische holographische Untersuchung digitale Holographie [Photorefraktivität photorefraktiv Photorefraktiver Effekt photorefraktives photorefraktiver photorefraktive lichtinduziert lichtinduzierte lichtinduzierter lichtinduziertes Lithiumniobat LiNbO3 LiNbO3] |
Popis: | In der vorliegenden Arbeit wird die neuartige Mikroskopiemethode der Ptychographie für die Untersuchung photorefraktiver Materialien genutzt. Photorefraktive Materialien zeichnen sich durch die Generation lichtinduzierter Brechungsindexänderungen aus. Die Ptychographie bietet die Möglichkeit, neben der generierten Brechungsindexänderung im photorefraktiven Material auch die für die Generation genutzte Intensitätsverteilung des Laserstrahls zu bestimmen. Es wird sowohl die Abhängigkeit der Brechungsindexänderung von der Zeit der Generation als auch die Abhängigkeit von der Polarisation des Lasers gemessen. Durch den Vergleich der gewonnenen Werte mit einer numerischen Simulation des photorefraktiven Effekts werden mikroskopische Parameter der lichtinduzierten Ladungswanderung ermittelt. Zudem wird aus der polarisationsabhängigen ptychographischen Messung das Raumladungsfeld und die korrespondierende Ladungsdichte im Material berechnet. Die Ptychographie liefert damit einen neuen Zugang zum quantitativen Verständnis der Photorefraktivität.:1 Einleitung 2 Theoretische Vorbetrachtungen 2.1 Ptychographie 2.1.1 Messung 2.1.2 Modell und Rekonstruktion 2.1.3 Ortsauflösung 2.2 Photorefraktiver Efekt 2.2.1 Lithiumniobat - Musterbeispiel für die Photorefraktivität 2.2.2 Ein-Zentrum-Modell 2.2.3 Brechungsindexänderung 2.2.4 Hohe Intensitäten 2.3 Raumladungsfeld 2.3.1 Ableitung des Feldes aus den Messgrößen 2.3.2 Raumladungsverteilung 2.3.3 Oberflächendeformation 2.3.4 Dynamik der Ladungen und des Feldes 3 Messungen 3.1 Proben 3.1.1 Ptychographische Teststruktur 3.1.2 LiNbO3:Fe 3.2 Versuchsanordnung 3.2.1 Experimenteller Aufbau 3.2.2 Grenze der Ortsauflösung 3.2.3 Charakterisierung des Laserstrahls 3.2.4 Experimentelle Überprüfung der Näherungen 3.3 Dynamik der Brechungsindexänderung 3.4 Polarisationsabhängigkeit der Brechungsindexänderung 4 Auswertung 4.1 Dynamik des Raumladungsfeldes und der Ladungen 4.1.1 Simulation 4.1.2 Vergleich zwischen Messung und Simulation 4.1.3 Dynamik der Ladungsverteilung 4.1.4 Fazit 4.2 Berechnung des Raumladungsfeldes 4.2.1 Raumladungsfeld und Ladungsverteilung 4.2.2 Simulation 4.2.3 Asymmetrie der Ladungsverteilung 4.2.4 Fazit 5 Zusammenfassung Appendizes A Physikalische Konstanten B Tensoren für LiNbO3 C Ungenäherte Herleitung der Brechungsindexänderung D Implementierung eines iterativen Verfahrens zur Bestimmung der Dynamik des Ein-Zentrum-Modells E Quelltext der Implementierung des iterativen Verfahrens Literaturverzeichnis In the present thesis the novel microscopy technique of ptychography is applied to the investigation of photorefractive materials. Photorefractive materials exhibit a change of the refractive index due to the exposure to light. The method of ptychography determines the refractive index change of the material together with the intensity distribution of the laser beam that was used for its generation. In one part of the experiment the time dependence of the refractive index change versus the generation time is investigated, in the other part of the experiment the dependence of the refractive index change to the polarisation of the laser beam is examined. Microscopic parameters of the photorefractive charge migration are determined with the utilisation of a numerical simulation of the photorefractive effect and its comparison with the measurement. Finally, the whole space charge field with the corresponding space charge density is calculated from a set of ptychographic measurements of one refractive index change with different polarisation directions of the laser. The presented experiments and their evaluation show, that the method of ptychography opens a new possibility for a quantitative understanding of the photorefractive effect.:1 Einleitung 2 Theoretische Vorbetrachtungen 2.1 Ptychographie 2.1.1 Messung 2.1.2 Modell und Rekonstruktion 2.1.3 Ortsauflösung 2.2 Photorefraktiver Efekt 2.2.1 Lithiumniobat - Musterbeispiel für die Photorefraktivität 2.2.2 Ein-Zentrum-Modell 2.2.3 Brechungsindexänderung 2.2.4 Hohe Intensitäten 2.3 Raumladungsfeld 2.3.1 Ableitung des Feldes aus den Messgrößen 2.3.2 Raumladungsverteilung 2.3.3 Oberflächendeformation 2.3.4 Dynamik der Ladungen und des Feldes 3 Messungen 3.1 Proben 3.1.1 Ptychographische Teststruktur 3.1.2 LiNbO3:Fe 3.2 Versuchsanordnung 3.2.1 Experimenteller Aufbau 3.2.2 Grenze der Ortsauflösung 3.2.3 Charakterisierung des Laserstrahls 3.2.4 Experimentelle Überprüfung der Näherungen 3.3 Dynamik der Brechungsindexänderung 3.4 Polarisationsabhängigkeit der Brechungsindexänderung 4 Auswertung 4.1 Dynamik des Raumladungsfeldes und der Ladungen 4.1.1 Simulation 4.1.2 Vergleich zwischen Messung und Simulation 4.1.3 Dynamik der Ladungsverteilung 4.1.4 Fazit 4.2 Berechnung des Raumladungsfeldes 4.2.1 Raumladungsfeld und Ladungsverteilung 4.2.2 Simulation 4.2.3 Asymmetrie der Ladungsverteilung 4.2.4 Fazit 5 Zusammenfassung Appendizes A Physikalische Konstanten B Tensoren für LiNbO3 C Ungenäherte Herleitung der Brechungsindexänderung D Implementierung eines iterativen Verfahrens zur Bestimmung der Dynamik des Ein-Zentrum-Modells E Quelltext der Implementierung des iterativen Verfahrens Literaturverzeichnis |
Databáze: | OpenAIRE |
Externí odkaz: |