OBRATOVANJE SINHRONSKEGA STROJA S TRAJNIMI MAGNETI OB OKVARI AKUMULATORSKEGA NAPAJALNEGA SISTEMA
Autor: | BREZNIK, MITJA |
---|---|
Přispěvatelé: | Ambrožič, Vanja |
Jazyk: | slovinština |
Rok vydání: | 2019 |
Předmět: |
zmanjšanje reda prenosne funkcije
akumulatorski napajalni sistem regulator napetosti vmesnega tokokroga permanent magnet synchronous motor lumped element electric circuit model power supply interruption sinhronski stroj s trajnimi magneti battery power supply model s koncentrirani elementi električnega vezja DC-link voltage regulator prekinitev napajalnega sistema transfer function order reduction |
Popis: | Detekcija okvar in možnost obratovanja ob prisotnosti okvare električnih pogonov sta pomembni raziskovalni področji, ki zagotavljata robustnost in večjo varnost vozil oziroma ostalih pogonskih sistemov. V električnem pogonu sinhronskega stroja s trajnimi magneti, ki je namenjen za mobilne sisteme, je ključna komponenta akumulatorski napajalni sistem. Okvara v napajalnem sistemu lahko povzroči hipno prekinitev pretoka energije. Ob neustreznem odzivu krmilnega sistema lahko prekinitev rezultira v izgubi nadzora nad električnimi količinami stroja, poškodbi elektronskih komponent kot posledica prenapetosti ali hipni izgubi napajanja za kontrolne sisteme. Prvi korak pri vzpostavitvi obratovanja ob prisotnosti okvare je hitra in robustna detekcija prekinitve napajalnega sistema. V disertaciji je predlagan modelno orientiran pristop detekcije prekinitve napajalnega sistema, ki temelji na modelu električnega vezja s koncentriranimi elementi. S pomočjo modela napajalnega sistema je mogoče oceniti napetost vmesnega tokokroga na podlagi enosmernega toka pretvorniškega mostiča ter napetosti odprtih sponk akumulatorja. Ker napetosti odprtih sponk akumulatorja ni mogoče neposredno izmeriti, je predlagan opazovalnik omenjene količine v drsnem režimu. Pojav razlike med izmerjeno ter ocenjeno vrednostjo napetosti vmesnega tokokroga je nato uporabljen kot indikator odpovedi. Pogoj odpovedi, ki zagotavlja odpornost na lažno oziroma napačno zaznavo, je osnovan analitično s pomočjo analize variabilnosti sistema ter pogreška meritev. Obratovanje pogona ob prisotnosti okvare omogoča rotacijska energija sistema električnega pogona, ki lahko potencialno zagotovi energijo potrebno za vzdrževanje napetosti vmesnega tokokroga. Nadzor nad nivojem napetosti vmesnega tokokroga omogoča nadaljnje obratovanje v področju slabljenja polja, prepreči sekundarno škodo zaradi okvare elektronskih komponent ter zagotavlja vir napajanja za pogone z enim virom napajanja. Predlagan je regulator napetosti vmesnega tokokroga, katerega notranja regulacijska zanka temelji na uveljavljeni vektorski regulaciji sinhronskega stroja s trajnimi magneti. Parametri kaskadne regulacije napetosti so ključni za stabilnost ter hiter prehod v obratovanje ob prisotnosti okvare. Na podlagi modela sistema je bil oblikovan analitičen pristop za določitev parametrov PI regulatorja vmesnega tokokroga, s pomočjo metode redukcije reda prenosne funkcije reguliranca. Za potrditev ključnih pristopov predlaganih v disertaciji sta bili uporabljeni metodi modeliranja sistemov ter numeričnih izračunov v okolju MATLAB/Simulink. Rezultati obsegajo primerjavo obstoječih modelov akumulatorja litijeve tehnologije s predlaganim modelom v disertaciji, analizo vpliva spremembe magnetne energije stroja ob pojavu okvare ter numerične rezultate transformacij pogreškov, ki vplivajo na uspešnost zaznave okvare. Eksperimentalni rezultati, ki potrjujejo možnost uspešne implementacije na realnem pogonu, so opravljeni s pomočjo sklopitve dveh električnih pogonov s pripadajočima napajalnima sistemoma. Najprej je preverjen vpliv hipne spremembe obratovalne točke stroja na odstopanje modela napajalnega sistema, ki lahko povzroči lažno zaznavo detekcijskega algoritma. Sledi uspešen prikaz zaznave prekinitve napajalnega tokokroga v primeru vsiljene okvare v sistem. Odziv regulatorja napetosti vmesnega tokokroga v kombinaciji z detekcijskim algoritmom je preverjen za različne obratovalne pogoje definirane pred pojavom vsiljene okvare napajalnega sistema. Zaključni del disertacije vsebuje pregled zastavljenih prispevkov k znanosti, izhodišča za nadaljnje raziskovanje ter možnost vpeljave predlaganih pristopov na širše področje električnih pogonskih sistemov. Fault detection and fault tolerance concerning electric drives are important research fields that ensure robustness and increased safety of vehicles and other drive systems. One of key components inside the permanent magnet synchronous motor electric drive, for mobile systems, is it’s battery power supply. Fault inside the drive’s power supply can cause a sudden interruption of the energy flow. In an event of an improper response of the control system this interruption can result in a loss of control over the electrical quantities of the drive, damage of the electronic components, as a result of overvoltage condition, or an abrupt loss of supply feeding the control systems. The first step towards establishing operation in the presence of a fault is a robust real-time detection of the power supply open circuit fault. This thesis proposes a model-based approach of fault detection based on the lumped electric circuit model of the power supply system. Using the power supply model, it is possible to determine the DC-link voltage of the electric drive based on the calculated inverter current and open circuit battery voltage. Since the open circuit battery voltage cannot be measured directly, a sliding mode observer is proposed. The deviation between the estimated and measured DC-link voltage is then used as a fault indicator. Value of a diagnostic threshold, which enables elimination of false positive detection, is based on the analytic calculation of measurement error and system parameter variability. Operation during the fault relies on the rotational energy of the electric drive, which could provide the energy necessary for maintaining the level of a DC-link voltage. Control over DC-link voltage enables operation in field weakening region, prevents secondary damage due to failure of electric components and, in case of drives supplied with single power source, provides the energy source for control systems. A DC-link voltage regulator is proposed, with its internal control loop based on the well-known field oriented control of the permanent magnet synchronous motor. Parameters of the cascade control loop are crucial for the stability and rapid transition to fault operation during an active open circuit fault. An analytic approach based on the model of the system was developed for determining the parameters of the DC-link voltage PI controller, using the method of reducing the order of system transfer function. System modelling and numerical calculations inside MATLAB/Simulink environment were used for verification of the key approaches stated in the thesis. Results comprise of comparisons between established lithium battery models and that proposed in the thesis, impact analysis of the change in machine’s magnetic field energy during the fault, and numerical results of error transformations that affect successful fault detection. Experimental results that confirm the possibility of deploying the proposed principles on a real electric drive are performed by coupling two electric drives with its respective battery power supplies. Firstly, the immunity to a false positive fault detection in case of sudden changes of the drives operating point is verified, followed by a successful presentation of fault detection in case of power supply circuit interruption. The response of the DC-link voltage regulator in combination with detection algorithm is verified for various operating conditions defined prior to the occurrence of open circuit power supply fault. Conclusion of the thesis contains an overview of novel contributions to the related research fields, prospects for future research, and the possibilities of applying proposed principles to the broader research field of electric drive systems. |
Databáze: | OpenAIRE |
Externí odkaz: |