Popis: |
Quotations extraction and attribution are important practical tasks for the media, but most of the presented solutions are monolingual. In this work, I present a complex machine learning-based system for extraction and attribution of direct and indirect quo- tations, which is trained on English and tested on Czech and Russian data. Czech and Russian test datasets were manually annotated as part of this study. This system is com- pared against a rule-based baseline model. Baseline model demonstrates better precision in extraction of quotation elements, but low recall. The machine learning-based model is better overall in extracting separate elements of quotations and full quotations as well. 1 |