CFD modeling of particle settling in drilling fluids: Impact of fluid rheology and particle characteristics
Autor: | Awad A.M., Hussein I.A., Nasser M.S., Karami H., Ahmed R. |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Lagrange multipliers
Spheres Newtonian fluid particle settling Terminal settling velocity computational fluid dynamics Non Newtonian flow Physics::Fluid Dynamics Shear flow Particle aspect ratios Particle characteristics size distribution Newtonian liquids drilling fluid Eulerian-Lagrangian method Particle trajectories Shear thinning power law Two phase flow Infill drilling Particle size and shape Particle size Empirical correlations Aspect ratio Elasticity Drag Computational fluid dynamics modeling Indexing (of information) rheology Drilling fluids numerical model Shear deformation flow field Forecasting |
Popis: | The settling of drilling cuttings is important for the drilling and clean-out operations. The current article provides a Computational Fluid Dynamics (CFD) modeling study of particle settling behavior during the drilling operations, with a special focus on the impact of fluid rheology, flow regime, particle size and shape on the settling rate. The Eulerian-Lagrangian method are adopted to track particle trajectories in a shear-thinning fluid under quiescent conditions. The rheological properties of the drilling fluids are described by different rheological models. Settling of spherical and ellipsoidal cuttings, with various aspect ratios, is studied for particles with a diameter ranging between 2 and 6 mm. The settling behavior is predicted for particles with narrow (0.5–2 mm), medium (0.5–6 mm) and broad (0.5–10 mm) particle size distributions (PSD). Applying a non-Newtonian power-law model at low shear rates, where the fluid is in the Newtonian regime, resulted in 11–19% over-prediction of settling velocities as compared to the experimental data. On the other hand, ignoring the particle-induced shear rate by assuming a Newtonian fluid behavior in the transition regime showed 8–10% difference between the estimated and experimental settling rates. Therefore, the CFD computations of settling rates suggest that Cross and Carreau models provide more accurate predictions than a simple power-law model. The selection of the suitable rheological model is a key factor in predicting settling in drilling fluids. This is more important for small particles where the Newtonian behavior is dominant and particle-induced shear rate is low. Ellipsoidal cuttings exhibited significantly greater resistance to settling as compared to spherical particles, mainly due to the increased drag force. Further, the terminal settling velocity of ellipsoidal cuttings consistently increased with the particle aspect ratio. Cuttings with broad PSD showed ~32 times higher settling velocity than particles with narrow PSD. CFD results are validated with experimental measurements. Moreover, results for settling of non-spherical particles are validated with an empirical correlation. Agreement of experimental and theoretical predictions is observed when the fluid and flow regimes are well identified and described This work was made possible by the support of a National Priorities Research Program (NPRP) grant from the Qatar National Research Fund (QNRF), grant reference number NPRP11S-1228?170140. The statements made herein are solely the responsibility of the authors. The authors would like to acknowledge Qatar National Library (QNL) for providing open access to this article. Scopus |
Databáze: | OpenAIRE |
Externí odkaz: |