Profiling hate speech spreaders on twitter task at PAN 2021
Autor: | Rangel, Francisco, Peña-Sarracén, Gretel Liz de la, Chulvi-Ferriols, María Alberta, Fersini, Elisabetta, Rosso, Paolo |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Popis: | [EN] This overview presents the Author Profiling shared task at PAN 2021. The focus of this year¿s task is on determining whether or not the author of a Twitter feed is keen to spread hate speech. The main aim is to show the feasibility of automatically identifying potential hate speech spreaders on Twitter. For this purpose a corpus with Twitter data has been provided, covering the English and Spanish languages. Altogether, the approaches of 66 participants have been evaluated. First of all, we thank the participants: again 66 this year, as the previous year on Profiling Fake News Spreaders! We have to thank also Martin Potthast, Matti Wiegmann, Nikolay Kolyada, and Magdalena Anna Wolska for their technical support with the TIRA platform. We thank Symanto for sponsoring again the award for the best performing system at the author profiling shared task. The work of Francisco Rangel was partially funded by the Centre for the Development of Industrial Technology (CDTI) of the Spanish Ministry of Science and Innovation under the research project IDI-20210776 on Proactive Profiling of Hate Speech Spreaders - PROHATER (Perfilador Proactivo de Difusores de Mensajes de Odio). The work of the researchers from Universitat Politècnica de València was partially funded by the Spanish MICINN under the project MISMIS-FAKEnHATE on MISinformation and MIScommunication in social media: FAKE news and HATE speech (PGC2018-096212-B-C31), and by the Generalitat Valenciana under the project DeepPattern (PROMETEO/2019/121). This article is also based upon work from the Dig-ForAsp COST Action 17124 on Digital Forensics: evidence analysis via intelligent systems and practices, supported by European Cooperation in Science and Technology. |
Databáze: | OpenAIRE |
Externí odkaz: |