Popis: |
Det humane mikrobiom er en integreret del af den menneskelige krop og overstiger det humane celle antal med cirka en faktor 10. Disse mikroorganismer er vigtige i forbindelse med human sundhed og viden omkring dette, ”vores andet genom”, er vokset hurtigt de seneste år. Dette er hovedsageligt på grund af udvikling indenfor ”next generation” sekventering, hvilket har muliggjort metagenomics studier i stor skala af forskellige nicher af det humane mikrobiom. Specielt tarmmikrobiomet er blevet studeret intensivt. Dog har de fleste studier udelukkende været deskriptive, og således er der stadig meget at lære i forbindelse med samspil mellem arter i mikrobiomet og mellem værten og de tilstedeværende mikroorganismer. Desuden er den ikke bakterielle del af mikrobiomet ikke særlig godt beskrevet, hvilket inkluderer bakteriofager, plasmider og mikroeukaryoter.I denne ph.d.-afhandling er metagenomics data fra den menneskelige tarm, mund og næse blevet analyseret. Den centrale metode har været en ”co-abundance clustering” metode, der separerer gener under den antagelse at gener der stammer fra det samme DNA (f.eks. et bakterie genom, en bakteriofag eller et plasmid) vil kovarierer henover alle prøver. Således opnås ”co-abundance gene groups” (CAGs), som repræsenterer bakterielle genomer, bakteriofager, plasmider eller andre genomiske elementer i systemet. Evnen til på denne måde at samle metagenomet igen åbner nye muligheder for at analysere de forskellige arters funktionelle potentiale såvel som interaktioner i systemet. Ved at anvende denne CAG clustering metode på data fra det humane tarmmikrobiom kunne vi identificere afhængighed mellem plasmider, bakteriofager og klonspecifikke gen sæt og deres bakterielle vært. Også sammenhænge mellem CRISPR-elementer og bakteriofager blev oberveret. Ydermere kunne persistensen af nogle bakterie arter i den menneskelige tarm forudsiges baseret på tilstedeværelsen af specifikke genetiske moduler.Baseret på den samme CAG clustering af det humane tarmmikrobiom data, blev sammenhængen mellem nedbrydning af galdesyrer udført af tarmbakterier og fedme undersøgt. Der forekom at være en svag sammenhæng mellem disse to, dog forbliver dette en hypotese til videre studier. Endvidere blev forekomsten af parasitten Blastocystis i det humane tarmmikrobiom data analyseret. Dette er første gang en metagenomics fremgangsmåde er blevet anvendt på dette problem og resultaterne stemte overens med tidligere prævalens studier af Blastocystis. Desuden blev det observeret at personer der havde en Bacteroides dreven enterotype havde en mindre tilbøjelig til at være bærere af Blastocystis parasitten.Afslutningsvis blev CAG clustering metoden anvendt på metagenomics data fra human næse og mund. Det kunne konkluderes at denne metode kræver yderligere forbedringer før den kan overføres direkte til andre datasæt.Sammenfattet præsenterer denne ph.d-afhandling ”co-abundance gene groups” (CAG) som et værdifuldt værktøj til analyse af humant mikrobiom data. Desuden bliver resultater, baseret på denne metode, der omhandler vigtige emner i forbindelse med det humane tarmmikrobiom beskrevet, hvilket inkluderer samspillet mellem bakteriearter og andre genetiske elementer i systemet, faktorer der kan have en indflydelse på udvikling af fedme og prævalens studier af eukaryoter. Studier af andre områder af det humane mikrobiom vil formentlig også kunne have gavn af CAG baserede analyser når metoden er blevet optimeret. The human microbiome is an integrated part of the human body, outnumbering the human cells by approximately a factor 10. These microorganisms are very important for human health, hence knowledge about this, ”our other genome”, has been growing rapidly in recent years. This is manly due to the advances in next generation sequencing, which has allowed for large-scale metagenomics studies of different niches of the human microbiota. Especially the gut microbiota has been studied intensively. However, most studies have been purely descriptive, thus there is still a lot to learn regarding the interplay between species in the microbiota and also between the host and the inhabiting microorganisms. Additionally, the non-bacterial part of the microbiota, which includes bacteriophages, plasmids and micro-eukaryotes, is not very well described.In this thesis, metagenomics data from the human gut, nose and oral cavity has been analyzed. The central method has been a co-abundance clustering method, which separates genes from metagenomics data under the assumption that genes originating from the same DNA (e.g. a bacterial genome, a phage or a plasmid) will co-vary across samples. Thus, co-abundance gene groups (CAGs) are obtained, which represent bacterial genomes, phages, plasmid or other genetic elements in the system. The ability to reassemble the metagenome in this way opens up new possibilities for analyzing the functional potential of species in the microbiota as well as the interactions in the system. Applying the CAG clustering method to data from the human gut microbiome, we identified dependency-associations between plasmids, phages and clone-specific gene sets to their bacterial host. Connections between CRISPR-elements and phages were also observed. Additionally, the persistence of some bacterial species in the human gut could be predicted based on absence or presence of specific genetic modules.Based on the same CAG clustering of the human gut microbiome data, the link between bile acid degradation of bacteria in the gut and obesity was investigated. There seemed to be a slight correlation between the two. However, this remains to be a hypothesis for further studies. Furthermore, the prevalence of the parasite Blastocystis in the human gut microbiome data was analyzed. This is the first time a metagenomics approach has been applied to this problem and the results were similar to previous Blastocystis prevalence studies. Moreover, it was found that individuals with a Bacteroides-driven enterotype were less prone to harbor the Blastocystis parasite.Finally, the CAG clustering method was applied to metagenomics data from the human nose- and oral-cavity. It was concluded that this method needs further improvement in order for it to be directly transferable to other datasets.In summary this thesis presents co-abundance gene groups (CAG) clustering as a valuable tool for analyzing human microbiome data. Furthermore, results based on this method regarding important topics in relation to the human gut microbiota are described, including the interplay between bacterial species and other genetic elements in the system, factors that might influence development of obesity and prevalence studies of eukaryotes. Studies of other areas of the human microbiome might also benefit from CAG based analyses once the tool has been optimized. |