Ω-Algebraic Structures
Autor: | Edeghagba Elijah, Eghosa |
---|---|
Přispěvatelé: | Šešelja, Branimir, Marković, Petar, Tepavčević, Andreja, Ćirić, Miroslav |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Ω-valued congruences
rasplinuti skup Ω vrednosna jednakost Ω-lattice Ω-algebras Omega-algebre Ω-vrednosne kongruencije Kompletna Ω mreza Omega- vrednosni homomorfizmi Ω -skup Ω-set Complete Ω-lattice Ω-valued Equality Closure system Ω-valued homomorphisms Weak congruences Ω-mreza Fuzzy set Sistem zatvaranja Ω-poset Slabe kongruecije |
Zdroj: | Универзитет у Новом Саду |
Popis: | The research work carried out in this thesis is aimed at fuzzifying algebraic and relational structures in the framework of Ω-sets, where Ω is a complete lattice. Therefore we attempt to synthesis universal algebra and fuzzy set theory. Our investigations of Ω-algebraic structures are based on Ω-valued equality, satisability of identities and cut techniques. We introduce Ω-algebras, Ω-valued congruences, corresponding quotient Ω-valued-algebras and Ω-valued homomorphisms and we investigate connections among these notions. We prove that there is an Ω-valued homomorphism from an Ω-algebra to the corresponding quotient Ω-algebra. The kernel of an Ω-valued homomorphism is an Ω-valued congruence. When dealing with cut structures, we prove that an Ω-valued homomorphism determines classical homomorphisms among the corresponding quotient structures over cut subalgebras. In addition, an Ω-valued congruence determines a closure system of classical congruences on cut subalgebras. In addition, identities are preserved under Ω-valued homomorphisms. Therefore in the framework of Ω-sets we were able to introduce Ω-attice both as an ordered and algebraic structures. By this Ω-poset is defined as an Ω-set equipped with Ω-valued order which is antisymmetric with respect to the corresponding Ω-valued equality. Thus defining the notion of pseudo-infimum and pseudo-supremum we obtained the definition of Ω-lattice as an ordered structure. It is also defined that the an Ω-lattice as an algebra is a bi-groupoid equipped with an Ω-valued equality fulfilling some particular lattice Ω-theoretical formulas. Thus using axiom of choice we proved that the two approaches are equivalent. Then we also introduced the notion of complete Ω-lattice based on Ω-lattice. It was defined as a generalization of the classical complete lattice. We proved results that characterizes Ω-structures and many other interesting results. Also the connection between Ω-algebra and the notion of weak congruences is presented. We conclude with what we feel are most interesting areas for future work. Tema ovog rada je fazifikovanje algebarskih i relacijskih struktura u okviru omega- skupova, gdeje Ω kompletna mreza. U radu se bavimo sintezom oblasti univerzalne algebre i teorije rasplinutih (fazi) skupova. Naša istraživanja omega-algebarskih struktura bazirana su na omega-vrednosnoj jednakosti,zadovoljivosti identiteta i tehnici rada sa nivoima. U radu uvodimo omega-algebre,omega-vrednosne kongruencije, odgovarajuće omega-strukture, i omega-vrednosne homomorfizme i istražujemo veze izmedju ovih pojmova. Dokazujemo da postoji Ω -vrednosni homomorfizam iz Ω -algebre na odgovarajuću količničku Ω -algebru. Jezgro Ω -vrednosnog homomorfizma je Ω- vrednosna kongruencija. U vezi sa nivoima struktura, dokazujemo da Ω -vrednosni homomorfizam odredjuje klasične homomorfizme na odgovarajućim količničkim strukturama preko nivoa podalgebri. Osim toga, Ω-vrednosna kongruencija odredjuje sistem zatvaranja klasične kongruencije na nivo podalgebrama. Dalje, identiteti su očuvani u Ω- vrednosnim homomorfnim slikama.U nastavku smo u okviru Ω-skupova uveli Ω-mreže kao uredjene skupove i kao algebre i dokazali ekvivalenciju ovih pojmova. Ω-poset je definisan kao Ω -relacija koja je antisimetrična i tranzitivna u odnosu na odgovarajuću Ω-vrednosnu jednakost. Definisani su pojmovi pseudo-infimuma i pseudo-supremuma i tako smo dobili definiciju Ω-mreže kao uredjene strukture. Takodje je definisana Ω-mreža kao algebra, u ovim kontekstu nosač te strukture je bi-grupoid koji je saglasan sa Ω-vrednosnom jednakošću i ispunjava neke mrežno-teorijske formule. Koristeći aksiom izbora dokazali smo da su dva pristupa ekvivalentna. Dalje smo uveli i pojam potpune Ω-mreže kao uopštenje klasične potpune mreže. Dokazali smo još neke rezultate koji karakterišu Ω-strukture.Data je i veza izmedju Ω-algebre i pojma slabih kongruencija.Na kraju je dat prikaz pravaca daljih istrazivanja. |
Databáze: | OpenAIRE |
Externí odkaz: |