Autor: |
Verwer, J.G., Bochev, Mikhail A. |
Rok vydání: |
2008 |
Předmět: |
|
Popis: |
Numerical integration of Maxwell's equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction implicit finite difference time domain scheme. In this paper we discuss unconditionally stable integration for a general semi-discrete Maxwell system allowing non-Cartesian space grids as encountered in finite element discretizations. Such grids exclude the alternating direction implicit approach. Particular attention is given to the second-order trapezoidal rule implemented with preconditioned conjugate gradient iteration and to second-order exponential integration using Krylov subspace iteration for evaluating the arising phi-functions. A three-space dimensional test problem is used for numerical assessment and comparison with an economical second order implicit-explicit integrator. We further pay attention to the Chebyshev series expansion for computing the exponential operator for skew-symmetric matrices. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|