An introduction to causal inference for pharmacometricians
Autor: | James A. Rogers, Hugo Maas, Alejandro Pérez Pitarch |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | CPT: pharmacometricssystems pharmacologyREFERENCES. |
ISSN: | 2163-8306 |
Popis: | As formal causal inference begins to play a greater role in disciplines that intersect with pharmacometrics, such as biostatistics, epidemiology, and artificial intelligence/machine learning, pharmacometricians may increasingly benefit from a basic fluency in foundational causal inference concepts. This tutorial seeks to orient pharmacometricians to three such fundamental concepts: potential outcomes, g-formula, and directed acyclic graphs (DAGs). |
Databáze: | OpenAIRE |
Externí odkaz: |