Differential interaction nets

Autor: Thomas Ehrhard, Laurent Regnier
Přispěvatelé: Institut de mathématiques de Luminy (IML), Centre National de la Recherche Scientifique (CNRS)-Université de la Méditerranée - Aix-Marseille 2, Preuves, Programmes et Systèmes (PPS), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université de la Méditerranée - Aix-Marseille 2-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2006
Předmět:
Normalization (statistics)
Pure mathematics
Correctness
General Computer Science
0102 computer and information sciences
proof nets
01 natural sciences
Curry–Howard correspondence
Theoretical Computer Science
Proof calculus
Tensor (intrinsic definition)
Computer Science::Logic in Computer Science
linear logic
Calculus
0101 mathematics
Algebraic number
computer.programming_language
Mathematics
Discrete mathematics
Geometry of interaction
interaction nets
Noncommutative logic
010102 general mathematics
[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO]
Interaction nets
Differential calculus
lambda-calculus
Differential lambda-calculus
Linear logic
Lambda-calculus with multiplicities
Algebra
Formalism (philosophy of mathematics)
TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES
010201 computation theory & mathematics
differential calculus
TheoryofComputation_LOGICSANDMEANINGSOFPROGRAMS
Lambda calculus
ACM F.3.2
computer
Differential (mathematics)
Resource lambda-calculus
Computer Science(all)
Zdroj: Theoretical Computer Science
Theoretical Computer Science, Elsevier, 2006, 364 (2), pp.166-195. ⟨10.1016/j.tcs.2006.08.003⟩
Theoretical Computer Science, 2006, 364 (2), pp.166-195. ⟨10.1016/j.tcs.2006.08.003⟩
ISSN: 0304-3975
1879-2294
DOI: 10.1016/j.tcs.2006.08.003
Popis: 30 pages; International audience; We introduce interaction nets for a fragment of the differential lambda-calculus and exhibit in this framework a new symmetry between the "of course" and the "why not" modalities of linear logic, which is completely similar to the symmetry between the "tensor" and "par" connectives of linear logic. We use algebraic intuitions for introducing these nets and their reduction rules, and then we develop two correctness criteria (weak typeability and acyclicity) and show that they guarantee strong normalization. Finally, we outline the correspondence between this interaction nets formalism and the resource lambda-calculus.
Databáze: OpenAIRE