Light yield determination in large sodium iodide detectors applied in the search for dark matter

Autor: M. I. Martínez, Y. Ortigoza, C. Cuesta, Carlos Pobes, J.A. Villar, S. Cebrián, M. A. Oliván, E. García, J. Puimedón, A. Ortiz de Solórzano, M.L. Sarsa, J. Amaré, P. Villar
Přispěvatelé: Ministerio de Economía y Competitividad (España), European Commission, Gobierno de Aragón
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Digital.CSIC. Repositorio Institucional del CSIC
instname
Popis: Application of NaI(Tl) detectors in the search for galactic dark matter particles through their elastic scattering off the target nuclei is well motivated because of the long standing DAMA/LIBRA highly significant positive result on annual modulation, still requiring confirmation. For such a goal, it is mandatory to reach very low threshold in energy (at or below the keV level), very low radioactive background (at a few counts/keV/kg/day), and high detection mass (at or above the 100 kg scale). One of the most relevant technical issues is the optimization of the crystal intrinsic scintillation light yield and the efficiency of the light collecting system for large mass crystals. In the frame of the ANAIS (Annual modulation with NaI Scintillators) dark matter search project large NaI(Tl) crystals from different providers coupled to two photomultiplier tubes (PMTs) have been tested at the Canfranc Underground Laboratory. In this paper we present the estimates of the NaI(Tl) scintillation light collected using full-absorption peaks at very low energy from external and internal sources emitting gammas/electrons, and single-photoelectron events populations selected by using very low energy pulses tails. Outstanding scintillation light collection at the level of 15 photoelectrons/keV can be reported for the final design and provider chosen for ANAIS detectors. Taking into account the quantum efficiency of the PMT units used, the intrinsic scintillation light yield in these NaI(Tl) crystals is above 40 photons/keV for energy depositions in the range from 3 up to 25 keV. This very high light output of ANAIS crystals allows triggering below 1 keV, which is very important in order to increase the sensitivity in the direct detection of dark matter.
This work has been financially supported by the Spanish Ministerio de Economía y Competitividad and the European Regional Development Fund (MINECO-FEDER) under grants No. FPA2011-23749 and FPA2014-55986-P, the Consolider-Ingenio 2010 Programme under grants MULTIDARK CSD2009-00064 and CPAN CSD2007-00042 and the Gobierno de Aragón and the European Social Fund (Group in Nuclear and Astroparticle Physics). P. Villar was supported by the MINECO Subprograma de Formación de Personal Investigador.
Databáze: OpenAIRE