Krein parameters and antipodal tight graphs with diameter 3 and 4

Autor: Aleksandar Jurišić, Jack H. Koolen
Rok vydání: 2002
Předmět:
Zdroj: Discrete Mathematics. 244:181-202
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(01)00082-6
Popis: We determine which Krein parameters of nonbipartite antipodal distance-regular graphs of diameter 3 and 4 can vanish, and give combinatorial interpretations of their vanishing. We also study tight distance-regular graphs of diameter 3 and 4. In the case of diameter 3, tight graphs are precisely the Taylor graphs. In the case of antipodal distance-regular graphs of diameter 4, tight graphs are precisely the graphs for which the Krein parameter q114 vanishes.
Databáze: OpenAIRE