Krein parameters and antipodal tight graphs with diameter 3 and 4
Autor: | Aleksandar Jurišić, Jack H. Koolen |
---|---|
Rok vydání: | 2002 |
Předmět: |
Discrete mathematics
Antipodal graphs 1-Homogeneous graphs Taylor graphs Antipodal point Graph theory Characterization (mathematics) Locally strongly-regular Theoretical Computer Science Metric dimension Combinatorics Indifference graph Chordal graph Krein parameters Discrete Mathematics and Combinatorics Regular graph Maximal independent set Tight graphs Distance-regular graphs Mathematics |
Zdroj: | Discrete Mathematics. 244:181-202 |
ISSN: | 0012-365X |
DOI: | 10.1016/s0012-365x(01)00082-6 |
Popis: | We determine which Krein parameters of nonbipartite antipodal distance-regular graphs of diameter 3 and 4 can vanish, and give combinatorial interpretations of their vanishing. We also study tight distance-regular graphs of diameter 3 and 4. In the case of diameter 3, tight graphs are precisely the Taylor graphs. In the case of antipodal distance-regular graphs of diameter 4, tight graphs are precisely the graphs for which the Krein parameter q114 vanishes. |
Databáze: | OpenAIRE |
Externí odkaz: |