Graphene oxide enhances alginate encapsulated cells viability and functionality while not affecting the foreign body response

Autor: Ciriza, Jesús, Saenz del Burgo, Laura, Gurruchaga, Haritz, Borràs i Serres, Francesc Enric, Franquesa, Marcella, Orive, Gorka, Hernández, Rosa Maria, Pedraz, José Luis, Universitat Autònoma de Barcelona
Rok vydání: 2018
Předmět:
0301 basic medicine
Cell
mesenchymal stem-cells
Pharmaceutical Science
02 engineering and technology
c2c12 myoblasts
Stem cells
immune response
Myoblasts
Mice
Drug Delivery Systems
Glucuronic Acid
stromal cells
Graphene oxide
mechanisms
Chemistry
Hexuronic Acids
Oxides
General Medicine
021001 nanoscience & nanotechnology
Foreign Bodies
Cell biology
medicine.anatomical_structure
cell microencapsulation
Hematocrit
Drug delivery
microencapsulation
graphene oxide
Graphite
erythropoietin
Stem cell
0210 nano-technology
C2C12
Research Article
Stromal cell
Alginates
Cell Survival
Drug Compounding
Capsules
Cell Line
03 medical and health sciences
stem cells
medicine
Animals
Immune response
Erythropoietin
Cell microencapsulation
Mesenchymal stem cell
lcsh:RM1-950
Mesenchymal Stem Cells
In vitro
drug-delivery
030104 developmental biology
lcsh:Therapeutics. Pharmacology
Cell culture
Delayed-Action Preparations
nonhuman-primates
l-lysine microcapsules
Zdroj: Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Drug Delivery, Vol 25, Iss 1, Pp 1147-1160 (2018)
Addi. Archivo Digital para la Docencia y la Investigación
instname
Drug Delivery
r-IGTP. Repositorio Institucional de Producción Científica del Instituto de Investigación Germans Trias i Pujol
ISSN: 1071-7544
Popis: The combination of protein-coated graphene oxide (GO) and microencapsulation technology has moved a step forward in the challenge of improving long-term alginate encapsulated cell survival and sustainable therapeutic protein release, bringing closer its translation from bench to the clinic. Although this new approach in cell microencapsulation represents a great promise for long-term drug delivery, previous studies have been performed only with encapsulated murine C2C12 myoblasts genetically engineered to secrete murine erythropoietin (C2C12-EPO) within 160 mu m diameter hybrid alginate protein-coated GO microcapsules implanted into syngeneic mice. Here, we show that encapsulated C2C12-EPO myoblasts survive longer and release more therapeutic protein by doubling the micron diameter of hybrid alginate-protein-coated GO microcapsules to 380 mu m range. Encapsulated mesenchymal stem cells (MSC) genetically modified to secrete erythropoietin (D1-MSCs-EPO) within 380 mu m-diameter hybrid alginate-protein-coated GO microcapsules confirmed this improvement in survival and sustained protein release in vitro. This improved behavior is reflected in the hematocrit increase of allogeneic mice implanted with both encapsulated cell types within 380 mu m diameter hybrid alginate-protein-coated GO microcapsules, showing lower immune response with encapsulated MSCs. These results provide a new relevant step for the future clinical application of protein-coated GO on cell microencapsulation. Authors thank the support to research on cell microencapsulation from the University of the Basque Country UPV/EHU (EHUa 16/06 to L.SB) and the Basque Country Government (Grupos Consolidados, No ref: IT907-16 to JL.P).
Databáze: OpenAIRE