Graphene oxide enhances alginate encapsulated cells viability and functionality while not affecting the foreign body response
Autor: | Ciriza, Jesús, Saenz del Burgo, Laura, Gurruchaga, Haritz, Borràs i Serres, Francesc Enric, Franquesa, Marcella, Orive, Gorka, Hernández, Rosa Maria, Pedraz, José Luis, Universitat Autònoma de Barcelona |
---|---|
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Cell mesenchymal stem-cells Pharmaceutical Science 02 engineering and technology c2c12 myoblasts Stem cells immune response Myoblasts Mice Drug Delivery Systems Glucuronic Acid stromal cells Graphene oxide mechanisms Chemistry Hexuronic Acids Oxides General Medicine 021001 nanoscience & nanotechnology Foreign Bodies Cell biology medicine.anatomical_structure cell microencapsulation Hematocrit Drug delivery microencapsulation graphene oxide Graphite erythropoietin Stem cell 0210 nano-technology C2C12 Research Article Stromal cell Alginates Cell Survival Drug Compounding Capsules Cell Line 03 medical and health sciences stem cells medicine Animals Immune response Erythropoietin Cell microencapsulation Mesenchymal stem cell lcsh:RM1-950 Mesenchymal Stem Cells In vitro drug-delivery 030104 developmental biology lcsh:Therapeutics. Pharmacology Cell culture Delayed-Action Preparations nonhuman-primates l-lysine microcapsules |
Zdroj: | Dipòsit Digital de Documents de la UAB Universitat Autònoma de Barcelona Drug Delivery, Vol 25, Iss 1, Pp 1147-1160 (2018) Addi. Archivo Digital para la Docencia y la Investigación instname Drug Delivery r-IGTP. Repositorio Institucional de Producción Científica del Instituto de Investigación Germans Trias i Pujol |
ISSN: | 1071-7544 |
Popis: | The combination of protein-coated graphene oxide (GO) and microencapsulation technology has moved a step forward in the challenge of improving long-term alginate encapsulated cell survival and sustainable therapeutic protein release, bringing closer its translation from bench to the clinic. Although this new approach in cell microencapsulation represents a great promise for long-term drug delivery, previous studies have been performed only with encapsulated murine C2C12 myoblasts genetically engineered to secrete murine erythropoietin (C2C12-EPO) within 160 mu m diameter hybrid alginate protein-coated GO microcapsules implanted into syngeneic mice. Here, we show that encapsulated C2C12-EPO myoblasts survive longer and release more therapeutic protein by doubling the micron diameter of hybrid alginate-protein-coated GO microcapsules to 380 mu m range. Encapsulated mesenchymal stem cells (MSC) genetically modified to secrete erythropoietin (D1-MSCs-EPO) within 380 mu m-diameter hybrid alginate-protein-coated GO microcapsules confirmed this improvement in survival and sustained protein release in vitro. This improved behavior is reflected in the hematocrit increase of allogeneic mice implanted with both encapsulated cell types within 380 mu m diameter hybrid alginate-protein-coated GO microcapsules, showing lower immune response with encapsulated MSCs. These results provide a new relevant step for the future clinical application of protein-coated GO on cell microencapsulation. Authors thank the support to research on cell microencapsulation from the University of the Basque Country UPV/EHU (EHUa 16/06 to L.SB) and the Basque Country Government (Grupos Consolidados, No ref: IT907-16 to JL.P). |
Databáze: | OpenAIRE |
Externí odkaz: |