Semantic Segmentation With Unsupervised Domain Adaptation Under Varying Weather Conditions for Autonomous Vehicles

Autor: Christian Laugier, Ozgur Erkent
Přispěvatelé: Robots coopératifs et adaptés à la présence humaine en environnements dynamiques (CHROMA), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CITI Centre of Innovation in Telecommunications and Integration of services (CITI), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon, Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)
Rok vydání: 2020
Předmět:
Control and Optimization
Computer science
Biomedical Engineering
02 engineering and technology
010501 environmental sciences
01 natural sciences
Domain (software engineering)
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
Artificial Intelligence
0202 electrical engineering
electronic engineering
information engineering

[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO]
Learning and Adaptive Systems
Segmentation
Intelligent Transportation Systems ITS
Adaptation (computer science)
0105 earth and related environmental sciences
Measure (data warehouse)
Artificial neural network
business.industry
Mechanical Engineering
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
Pattern recognition
Image segmentation
Computer Science Applications
Human-Computer Interaction
Control and Systems Engineering
020201 artificial intelligence & image processing
Semantic Scene Understanding
Computer Vision and Pattern Recognition
Artificial intelligence
business
Zdroj: IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters, IEEE 2020, pp.1-8. ⟨10.1109/LRA.2020.2978666⟩
IEEE Robotics and Automation Letters, 2020, pp.1-8. ⟨10.1109/LRA.2020.2978666⟩
ISSN: 2377-3774
2377-3766
DOI: 10.1109/lra.2020.2978666
Popis: International audience; Semantic information provides a valuable source for scene understanding around autonomous vehicles in order to plan their actions and make decisions; however, varying weather conditions reduce the accuracy of the semantic segmentation. We propose a method to adapt to varying weather conditions without supervision, namely without labeled data. We update the parameters of a deep neural network (DNN) model that is pre-trained on the known weather condition (source domain) to adapt it to the new weather conditions (target domain) without forgetting the segmentation in the known weather condition. Furthermore, we don't require the labels from the source domain during adaptation training. The parameters of the DNN are optimized to reduce the distance between the distribution of the features from the images of old and new weather conditions. To measure this distance, we propose three alternatives: W-GAN, GAN and maximum-mean discrepancy (MMD). We evaluate our method on various datasets with varying weather conditions. The results show that the accuracy of the semantic segmentation is improved for varying conditions after adaptation with the proposed method.
Databáze: OpenAIRE