Glassy phase in quenched disordered crystalline membranes
Autor: | O. Coquand, D. Mouhanna, J.-P. Kownacki, K. Essafi |
---|---|
Přispěvatelé: | Laboratoire de Physique Théorique de la Matière Condensée ( LPTMC ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Théorique et Modélisation ( LPTM ), Université de Cergy Pontoise ( UCP ), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire de Physique Théorique et Modélisation (LPTM - UMR 8089), Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY) |
Rok vydání: | 2018 |
Předmět: |
Phase transition
Materials science Condensed matter physics Graphene Renormalization group Fixed point Curvature 01 natural sciences [PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] 010305 fluids & plasmas law.invention Membrane Critical point (thermodynamics) law 0103 physical sciences [ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] 010306 general physics |
Zdroj: | Phys.Rev.E Phys.Rev.E, 2018, 97 (3), pp.030102. 〈10.1103/PhysRevE.97.030102〉 Phys.Rev.E, 2018, 97 (3), pp.030102. ⟨10.1103/PhysRevE.97.030102⟩ Physical Review E : Statistical, Nonlinear, and Soft Matter Physics Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2018, 97 (3), pp.030102. ⟨10.1103/PhysRevE.97.030102⟩ |
ISSN: | 2470-0053 2470-0045 1539-3755 1550-2376 |
DOI: | 10.1103/physreve.97.030102 |
Popis: | We investigate the flat phase of $D$-dimensional crystalline membranes embedded in a $d$-dimensional space and submitted to both metric and curvature quenched disorders using a nonperturbative renormalization group approach. We identify a second-order phase transition controlled by a finite-temperature, finite-disorder fixed point unreachable within the leading order of $\ensuremath{\epsilon}=4\ensuremath{-}D$ and $1/d$ expansions. This critical point divides the flow diagram into two basins of attraction: that associated with the finite-temperature fixed point controlling the long-distance behavior of disorder-free membranes and that associated with the zero-temperature, finite-disorder fixed point. Our work thus strongly suggests the existence of a whole low-temperature glassy phase for quenched disordered crystalline membranes and, possibly, for graphene and graphene-like compounds. |
Databáze: | OpenAIRE |
Externí odkaz: |