Glassy phase in quenched disordered crystalline membranes

Autor: O. Coquand, D. Mouhanna, J.-P. Kownacki, K. Essafi
Přispěvatelé: Laboratoire de Physique Théorique de la Matière Condensée ( LPTMC ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Théorique et Modélisation ( LPTM ), Université de Cergy Pontoise ( UCP ), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire de Physique Théorique et Modélisation (LPTM - UMR 8089), Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
Rok vydání: 2018
Předmět:
Zdroj: Phys.Rev.E
Phys.Rev.E, 2018, 97 (3), pp.030102. 〈10.1103/PhysRevE.97.030102〉
Phys.Rev.E, 2018, 97 (3), pp.030102. ⟨10.1103/PhysRevE.97.030102⟩
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2018, 97 (3), pp.030102. ⟨10.1103/PhysRevE.97.030102⟩
ISSN: 2470-0053
2470-0045
1539-3755
1550-2376
DOI: 10.1103/physreve.97.030102
Popis: We investigate the flat phase of $D$-dimensional crystalline membranes embedded in a $d$-dimensional space and submitted to both metric and curvature quenched disorders using a nonperturbative renormalization group approach. We identify a second-order phase transition controlled by a finite-temperature, finite-disorder fixed point unreachable within the leading order of $\ensuremath{\epsilon}=4\ensuremath{-}D$ and $1/d$ expansions. This critical point divides the flow diagram into two basins of attraction: that associated with the finite-temperature fixed point controlling the long-distance behavior of disorder-free membranes and that associated with the zero-temperature, finite-disorder fixed point. Our work thus strongly suggests the existence of a whole low-temperature glassy phase for quenched disordered crystalline membranes and, possibly, for graphene and graphene-like compounds.
Databáze: OpenAIRE