Popis: |
Driven by the force of gravity, hanging glacier instabilities can lead to catastrophic rupture events. Reliable forecasting remains a challenge as englacial damage leading to large-scale failure is masked from modern sensing technology focusing on the ice surface. The Eiger hanging glacier, located in the Swiss Alps, was intensely monitored between April and August 2016 before a moderate 15,000 m3 break-off event from the ice cliff. Among different instruments, such as an automatic camera and interferometric radar, four 3-component seismometers were installed on the glacier. A single seismometer operated throughout the whole monitoring period. It recorded over 200,000 repeating icequakes showing strong englacial seismic coda waves. We propose a novel approach for hanging glacier monitoring by combining repeating icequake analysis, coda wave interferometry, and attenuation measurements. Our results show a seasonal 0.1 % decrease in relative englacial seismic velocity dv/v and an increase in coda wave attenuation Qc−1 (Qc decreases from ~50 to ~30). Comparison of dv/v and Qc with air temperature suggests that these changes are driven by a seasonal increase in the glacier’s ice and firn pack temperature that might affect the top 20 m of the glacier. Diurnal cycles of Qc−1, repeating icequake activity, and the velocity of the glacier front shift from cosinusoidal to sinusoidal variations under the presence of meltwater. The proposed approach extends the monitoring of the hanging glacier beyond the ice surface and allows for a better understanding of the glacier’s response to time-dependent external forcing, which is an important step towards improved break-off forecasting systems. |