On the asymptotic Plateau problem for CMC hypersurfaces in hyperbolic space

Autor: Jaime Ripoll, Miriam Telichevesky
Rok vydání: 2015
Předmět:
DOI: 10.48550/arxiv.1503.08083
Popis: Let $\mathbb{R}_{+}^{n+1}$ \ be the half-space model of the hyperbolic space $\mathbb{H}^{n+1}.$ It is proved that if $\Gamma\subset\left\{ x_{n+1}=0\right\} \subset\partial_{\infty}\mathbb{H}^{n+1}$ is a bounded $C^{0}$ Euclidean graph over $\left\{ x_{1}=0,\text{ }x_{n+1}=0\right\} $ then, given $\left\vert H\right\vert
Comment: This is a new version of arXiv:1309.3644 ; Improvements have been made in the proof of the main theorem
Databáze: OpenAIRE