On the asymptotic Plateau problem for CMC hypersurfaces in hyperbolic space
Autor: | Jaime Ripoll, Miriam Telichevesky |
---|---|
Rok vydání: | 2015 |
Předmět: |
Mathematics - Differential Geometry
Physics General Mathematics Hyperbolic space 010102 general mathematics Existence theorem 02 engineering and technology 01 natural sciences Plateau's problem Dirichlet distribution Combinatorics symbols.namesake Hypersurface Differential Geometry (math.DG) Bounded function Euclidean geometry Boundary data 0202 electrical engineering electronic engineering information engineering symbols FOS: Mathematics 020201 artificial intelligence & image processing 0101 mathematics |
DOI: | 10.48550/arxiv.1503.08083 |
Popis: | Let $\mathbb{R}_{+}^{n+1}$ \ be the half-space model of the hyperbolic space $\mathbb{H}^{n+1}.$ It is proved that if $\Gamma\subset\left\{ x_{n+1}=0\right\} \subset\partial_{\infty}\mathbb{H}^{n+1}$ is a bounded $C^{0}$ Euclidean graph over $\left\{ x_{1}=0,\text{ }x_{n+1}=0\right\} $ then, given $\left\vert H\right\vert Comment: This is a new version of arXiv:1309.3644 ; Improvements have been made in the proof of the main theorem |
Databáze: | OpenAIRE |
Externí odkaz: |