INVESTIGATION OF PHOTOELECTRIC CONVERTERS WITH A BASE CADMIUM TELLURIDE LAYER WITH A DECREASE IN ITS THICKNESS FOR TANDEM AND TWO-SIDED SENSITIVE INSTRUMENT STRUCTURES

Autor: Roman Shevchenko, Anastasiia Khmyrova, Olexandr Tarasenko, Igor Khmyrov, Mykola Matiushenko, Igor Kryvulkin, Natalya Deyneko
Rok vydání: 2019
Předmět:
Zdroj: EUREKA: Physics and Engineering. 5:73-80
ISSN: 2461-4262
2461-4254
DOI: 10.21303/2461-4262.2019.001002
Popis: Photovoltaic cells with a base layer of cadmium telluride with a decrease in its thickness are studied. It is known that the widespread use of photovoltaic converters is constrained by their high price in the case of highly efficient instrument structures, or low efficiency. The creation of tandem and two-sided sensitive photoelectric converters will reduce their cost while increasing their efficiency. However, to create tandem and two-sided sensitive photoelectric converters, the necessary conditions are the use of transparent contacts and a decrease in the thickness of the base layer for efficient absorption of incident radiation by the converter, which is lower. In the research process, it was found that reducing the thickness of the base layer to 1 μm allows to increase the efficiency of the photoelectric transducer during irradiation from the back. An increase in the efficiency of the photoelectric converter occurs due to a decrease in the distance from the generation region of nonequilibrium charge carriers in the region of separation. If the thickness of the base layer is less than 1 μm, then regardless of which side of the irradiation is carried out, a decrease in the efficiency of the instrument structure is observed. Increase in the efficiency of photoconverters is associated with an increase in the negative influence of recombination processes on the back contact, a decrease in the number of charge carriers generated due to incomplete absorption of incident radiation, and a decrease in the volume of the built-in field of the separating barrier when it overlaps with the depletion region of the back contact. ITO/CdS/CdTe/Cu/ITO SCs with a base layer thickness of 1 μm demonstrates degradation stability. The highest value of efficiency in the case of illumination from the front side 8.1% and with illumination from the back side 3.8% received after a year of operation of the photovoltaic converter.
Databáze: OpenAIRE