Simulation of TTT Curves for Additively Manufactured Inconel 625
Autor: | Andrew J. Allen, Mark R. Stoudt, Greta Lindwall, Eric A. Lass, F. Zhang, Lyle E. Levine, Carelyn E. Campbell |
---|---|
Rok vydání: | 2022 |
Předmět: |
010302 applied physics
Fusion Structural material Materials science Precipitation (chemistry) Diagram Metallurgy 0211 other engineering and technologies Metals and Alloys 02 engineering and technology Condensed Matter Physics Microstructure Inconel 625 Kinetic energy 01 natural sciences Isothermal transformation diagram Mechanics of Materials 0103 physical sciences 021102 mining & metallurgy |
Zdroj: | Metallurgical and materials transactions. A. Physical metallurgy and materials science. 50(1) |
ISSN: | 1543-1940 |
Popis: | The ability to use common computational thermodynamic and kinetic tools to study the microstructure evolution in Inconel 625 (IN625) manufactured using the additive manufacturing (AM) technique of laser powder-bed fusion is evaluated. Solidification simulations indicate that laser melting and re-melting during printing produce highly segregated interdendritic regions. Precipitation simulations for different degrees of segregation show that the larger the segregation, i.e., the richer the interdendritic regions are in Nb and Mo, the faster the δ-phase (Ni3Nb) precipitation. This is in accordance with the accelerated δ precipitation observed experimentally during post-build heat treatments of AM IN625 compared to wrought IN625. The δ-phase may be undesirable since it can lead to detrimental effects on the mechanical properties. The results are presented in the form of a TTT diagram and agreement between the simulated diagram and the experimental TTT diagram demonstrate how these computational tools can be used to guide and optimize post-build treatments of AM materials. |
Databáze: | OpenAIRE |
Externí odkaz: |