A Class of Schur Multipliers of Matrices with Operator Entries
Autor: | Ismael García-Bayona, Oscar Blasco |
---|---|
Rok vydání: | 2019 |
Předmět: |
General Mathematics
010102 general mathematics Diagonal Triangular matrix 01 natural sciences Toeplitz matrix Functional Analysis (math.FA) Mathematics - Functional Analysis 010101 applied mathematics Combinatorics Operator (computer programming) Norm (mathematics) FOS: Mathematics 47L10 46E40 (Primary) 47A56 15B05 46G10 (Secondary) 0101 mathematics Finite set Separable hilbert space Mathematics |
Zdroj: | Mediterranean Journal of Mathematics. 16 |
ISSN: | 1660-5454 1660-5446 |
DOI: | 10.1007/s00009-019-1364-4 |
Popis: | In this paper, we will consider matrices with entries in the space of operators $\mathcal{B}(H)$, where $H$ is a separable Hilbert space, and consider the class of (left or right) Schur multipliers that can be approached in the multiplier norm by matrices with a finite number of diagonals. We will concentrate on the case of Toeplitz matrices and of upper triangular matrices to get some connections with spaces of vector-valued functions. arXiv admin note: text overlap with arXiv:1810.07819 |
Databáze: | OpenAIRE |
Externí odkaz: |