Propagation of regularity and persistence of decay for fifth order dispersive models
Autor: | Jun Ichi Segata, Derek L. Smith |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Pure mathematics
Partial differential equation 010102 general mathematics Mathematical analysis 35Q53 (Primary) 35B05 (Secondary) Order (ring theory) 01 natural sciences 010101 applied mathematics Polynomial decay Mathematics - Analysis of PDEs Ordinary differential equation FOS: Mathematics Initial value problem 0101 mathematics Korteweg–de Vries equation Analysis Analysis of PDEs (math.AP) Mathematics |
Popis: | This paper considers the initial value problem for a class of fifth order dispersive models containing the fifth order KdV equation $$\partial_tu - \partial_x^5u - 30u^2\partial_xu + 20\partial_xu\partial_x^2u + 10u\partial_x^3u = 0.$$ The main results show that regularity or polynomial decay of the data on the positive half-line yields regularity in the solution for positive times. 36 pages |
Databáze: | OpenAIRE |
Externí odkaz: |