Flavour tagging with graph neural networks with the ATLAS detector
Autor: | Duperrin, Arnaud |
---|---|
Přispěvatelé: | Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), ATLAS |
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | 30th International Workshop on Deep-Inelastic Scattering and Related Subjects 30th International Workshop on Deep-Inelastic Scattering and Related Subjects, Mar 2023, East Lansing, United States |
Popis: | The identification of jets containing a $b$-hadron, referred to as $b$-tagging, plays an important role for various physics measurements and searches carried out by the ATLAS experiment at the CERN Large Hadron Collider (LHC). The most recent $b$-tagging algorithm developments based on graph neural network architectures are presented. Preliminary performance on Run 3 data in $pp$ collisions at $\sqrt s = 13.6$ TeV is shown and expected performance at the High-Luminosity LHC (HL-LHC) discussed. 6 pages, 2 figures, 1 table, Presented at DIS2023: XXX International Workshop on Deep-Inelastic Scattering and Related Subjects, Michigan State University, USA, 27-31 March 2023 |
Databáze: | OpenAIRE |
Externí odkaz: |