Flavour tagging with graph neural networks with the ATLAS detector

Autor: Duperrin, Arnaud
Přispěvatelé: Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), ATLAS
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: 30th International Workshop on Deep-Inelastic Scattering and Related Subjects
30th International Workshop on Deep-Inelastic Scattering and Related Subjects, Mar 2023, East Lansing, United States
Popis: The identification of jets containing a $b$-hadron, referred to as $b$-tagging, plays an important role for various physics measurements and searches carried out by the ATLAS experiment at the CERN Large Hadron Collider (LHC). The most recent $b$-tagging algorithm developments based on graph neural network architectures are presented. Preliminary performance on Run 3 data in $pp$ collisions at $\sqrt s = 13.6$ TeV is shown and expected performance at the High-Luminosity LHC (HL-LHC) discussed.
6 pages, 2 figures, 1 table, Presented at DIS2023: XXX International Workshop on Deep-Inelastic Scattering and Related Subjects, Michigan State University, USA, 27-31 March 2023
Databáze: OpenAIRE