Towards Autonomous Pipeline Inspection with Hierarchical Reinforcement Learning

Autor: Botteghi, Nicolò, Grefte, Luuk, Poel, Mannes, Sirmacek, Beril, Brune, Christoph, Dertien, Edwin, Stramigioli, Stefano, Kim, Jinwhan, Englot, Brendan, Park, Hae-Won, Choi, Han-Lim, Myung, Hyun, Kim, Junmo, Kim, Jong-Hwan
Přispěvatelé: Applied Analysis, Digital Society Institute, Datamanagement & Biometrics, Robotics and Mechatronics
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Robot Intelligence Technology and Applications 6-Results from the 9th International Conference on Robot Intelligence Technology and Applications, 259-271
STARTPAGE=259;ENDPAGE=271;TITLE=Robot Intelligence Technology and Applications 6-Results from the 9th International Conference on Robot Intelligence Technology and Applications
Robot Intelligence Technology and Applications 6 ISBN: 9783030976712
ISSN: 2367-3370
DOI: 10.1007/978-3-030-97672-9_23
Popis: Inspection and maintenance are two crucial aspects of industrial pipeline plants. While robotics has made tremendous progress in the mechanic design of in-pipe inspection robots, the autonomous control of such robots is still a big open challenge due to the high number of actuators and the complex manoeuvres required. To address this problem, we investigate the usage of Deep Reinforcement Learning for achieving autonomous navigation of in-pipe robots in pipeline networks with complex topologies. We introduce a hierarchical policy decomposition based on Hierarchical Reinforcement Learning to learn robust high-level navigation skills. We show that the hierarchical structure introduced in the policy is fundamental for solving the navigation task through pipes and necessary for achieving navigation performances superior to human-level control. A video of our experiments can be found at: https://youtu.be/uyjSHulpGoI.
Databáze: OpenAIRE