Towards Autonomous Pipeline Inspection with Hierarchical Reinforcement Learning
Autor: | Botteghi, Nicolò, Grefte, Luuk, Poel, Mannes, Sirmacek, Beril, Brune, Christoph, Dertien, Edwin, Stramigioli, Stefano, Kim, Jinwhan, Englot, Brendan, Park, Hae-Won, Choi, Han-Lim, Myung, Hyun, Kim, Junmo, Kim, Jong-Hwan |
---|---|
Přispěvatelé: | Applied Analysis, Digital Society Institute, Datamanagement & Biometrics, Robotics and Mechatronics |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Robot Intelligence Technology and Applications 6-Results from the 9th International Conference on Robot Intelligence Technology and Applications, 259-271 STARTPAGE=259;ENDPAGE=271;TITLE=Robot Intelligence Technology and Applications 6-Results from the 9th International Conference on Robot Intelligence Technology and Applications Robot Intelligence Technology and Applications 6 ISBN: 9783030976712 |
ISSN: | 2367-3370 |
DOI: | 10.1007/978-3-030-97672-9_23 |
Popis: | Inspection and maintenance are two crucial aspects of industrial pipeline plants. While robotics has made tremendous progress in the mechanic design of in-pipe inspection robots, the autonomous control of such robots is still a big open challenge due to the high number of actuators and the complex manoeuvres required. To address this problem, we investigate the usage of Deep Reinforcement Learning for achieving autonomous navigation of in-pipe robots in pipeline networks with complex topologies. We introduce a hierarchical policy decomposition based on Hierarchical Reinforcement Learning to learn robust high-level navigation skills. We show that the hierarchical structure introduced in the policy is fundamental for solving the navigation task through pipes and necessary for achieving navigation performances superior to human-level control. A video of our experiments can be found at: https://youtu.be/uyjSHulpGoI. |
Databáze: | OpenAIRE |
Externí odkaz: |