Simple vs complex temporal recurrences for video saliency prediction

Autor: Linardos, P., Mohedano, E., Nieto, J. J., O Connor, N. E., Giro-I-Nieto, X., Kevin McGuinness
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Linardos, Panagiotis, Mohedano, Eva, Nieto, Juan Jose, O'Connor, Noel E. ORCID: 0000-0002-4033-9135 , Giró-i-Nieto, Xavier ORCID: 0000-0002-9935-5332 and McGuinness, Kevin ORCID: 0000-0003-1336-6477 (2019) Simple vs complex temporal recurrences for video saliency prediction. In: 30th British Machine Vision Conference (BMVC), 9-12 Sept 2019, Cardiff, Wales, UK.
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Scopus-Elsevier
Popis: This paper investigates modifying an existing neural network architecture for static saliency prediction using two types of recurrences that integrate information from the temporal domain. The first modification is the addition of a ConvLSTM within the architecture, while the second is a conceptually simple exponential moving average of an internal convolutional state. We use weights pre-trained on the SALICON dataset and fine-tune our model on DHF1K. Our results show that both modifications achieve state-of-the-art results and produce similar saliency maps. Source code is available at https://git.io/fjPiB.
Accepted at BMVC 2019
Databáze: OpenAIRE