Phase transitions in persistent and run-and-tumble walks

Autor: Raúl Toral, Christian Van den Broeck, Karel Proesmans
Přispěvatelé: Research Foundation - Flanders, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, PROESMANS, Karel, Toral, Raul, VAN DEN BROECK, Christian
Rok vydání: 2018
Předmět:
Zdroj: Digital.CSIC. Repositorio Institucional del CSIC
instname
DOI: 10.48550/arxiv.1808.09715
Popis: We calculate the large deviation function of the end-to-end distance and the corresponding extension-versus-force relation for (isotropic) random walks, on and off-lattice, with and without persistence, and in any spatial dimension. For off-lattice random walks with persistence, the large deviation function undergoes a first order phase transition in dimension . In the corresponding force-versus-extension relation, the extension becomes independent of the force beyond a critical value. The transition is anticipated in dimensions and , where full extension is reached at a finite value of the applied stretching force. Full analytic details are revealed in the run-and-tumble limit. Finally, on-lattice random walks with persistence display a softening phase in dimension and above, preceding the usual stiffening appearing beyond a critical value of the force.
KP is a postdoctoral fellow of the Research Foundation-Flanders (FWO). RT acknowledges financial support from Agencia Estatal de Investigación (AEI, Spain) and Fondo Europeo de Desarrollo Regional under Grant No. RTI2018-093732-B-C21 (AEI/FEDER,UE) and the María de Maeztu Program for Units of Excellence in R&D (MDM-2017-0711).
Databáze: OpenAIRE