Popis: |
Coccolith size matters on routine identification of calcareous nannofossil species. But morphometry can also be a tool to study their morphological plasticity and adaptations to environmental patterns. Most current studies are limited in extracting morphological plasticity data, with most statistical methods varying from histogram analysis to mixture analysis, or even multistatistical analysis, allowing the identification of morphotypes but with significant assumptions (e.g., normal distribution) on the morphological pattern of the potential different morphotypes within a population. To address this limitation a multivariate statistical morphometrical tool, Integrated Multivariate Morphon Analysis (IMMA), was developed to identify different placolith morphotypes regarding maximum coccolith length and applied to Quaternary GeoB5559-2 samples, using morphometry data of C. p. braarudii. The results show that IMMA and morphometry microvariations can be used to extract variations in upwelling intensity and primary productivity, extracting the morphological plasticity of C. p. braarudii as a response to primary productivity variations. Thus, IMMA has great potential for studies on the effects of climatic events on coastal upwelling regions during the Quaternary. |