Planar multilayer circuit quantum electrodynamics

Autor: Michael Hatridge, Robert Schoelkopf, Michel Devoret, Kyle Serniak, Katrina Sliwa, Zlatko Minev, Zaki Leghtas, Ioan Pop, Luigi Frunzio
Přispěvatelé: Departments of Applied Physics [New Haven], Yale University [New Haven], QUANTum Information Circuits (QUANTIC), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centre Automatique et Systèmes (CAS), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Mines Paris - PSL (École nationale supérieure des mines de Paris)
Rok vydání: 2015
Předmět:
Zdroj: Physical Review Applied
Physical Review Applied, American Physical Society, 2016, 5, pp.044021. ⟨10.1103/PhysRevApplied.5.044021⟩
Physical Review Applied, 2016, 5, pp.044021. ⟨10.1103/PhysRevApplied.5.044021⟩
ISSN: 2331-7019
DOI: 10.48550/arxiv.1509.01619
Popis: International audience; Experimental quantum information processing with superconducting circuits is rapidly advancing, driven by innovation in two classes of devices, one involving planar microfabricated (2D) resonators, and the other involving machined three-dimensional (3D) cavities. We demonstrate that circuit quantum electrodynamics can be implemented in a multilayer superconducting structure that combines 2D and 3D advantages. We employ standard microfabrication techniques to pattern each layer, and rely on a vacuum gap between the layers to store the electromagnetic energy. Planar qubits are lithographically defined as an aperture in a conducting boundary of the resonators. We demonstrate the aperture concept by implementing an integrated, two-cavity-mode, one-transmon-qubit system.
Databáze: OpenAIRE