The Dirichlet problem for the constant mean curvature equation in Sol_3
Autor: | Ana Menezes, Patrícia Klaser |
---|---|
Rok vydání: | 2016 |
Předmět: |
Mathematics - Differential Geometry
Dirichlet problem Pure mathematics Mean curvature General Mathematics 010102 general mathematics Construct (python library) 01 natural sciences Differential Geometry (math.DG) Bounded function 0103 physical sciences Boundary data FOS: Mathematics 010307 mathematical physics Mathematics::Differential Geometry 0101 mathematics Constant (mathematics) Mathematics |
DOI: | 10.48550/arxiv.1605.03532 |
Popis: | A version of the Jenkins-Serrin theorem for the existence of CMC graphs over bounded domains with infinite boundary data in Sol$_3$ is proved. Moreover, we construct examples of admissible domains where the results may be applied. Comment: Final version. Accepted for publication on Illinois Journal of Mathematics |
Databáze: | OpenAIRE |
Externí odkaz: |