Unitarization of the Horocyclic Radon Transform on Homogeneous Trees
Autor: | Filippo De Mari, Matteo Monti, Francesca Bartolucci |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Homogeneous tree
Pure mathematics Mathematics::Dynamical Systems General Mathematics Space (mathematics) symbols.namesake Tree (descriptive set theory) Homogeneous trees Horocyclic Radon transform Dual pairs Quasi regular representations FOS: Mathematics Mathematics::Metric Geometry Representation Theory (math.RT) Mathematics Partial differential equation Radon transform Group (mathematics) Applied Mathematics Mathematics::Spectral Theory Fourier analysis Homogeneous symbols Analysis Mathematics - Representation Theory |
Zdroj: | Journal of Fourier Analysis and Applications, 27 (5) |
ISSN: | 1069-5869 1531-5851 |
Popis: | Following previous work in the continuous setup, we construct the unitarization of the horocyclic Radon transform on a homogeneous tree X and we show that it intertwines the quasi regular representations of the group of isometries of X on the tree itself and on the space of horocycles. Journal of Fourier Analysis and Applications, 27 (5) ISSN:1069-5869 ISSN:1531-5851 |
Databáze: | OpenAIRE |
Externí odkaz: |