Total edge irregularity strength of quadruplet and quintuplet book graphs
Autor: | Sri Wahyuni, Diah Junia Eksi Palupi, Lucia Ratnasari, Yeni Susanti |
---|---|
Rok vydání: | 2021 |
Předmět: |
Vertex (graph theory)
lcsh:T58.5-58.64 lcsh:Information technology 010102 general mathematics General Engineering 0102 computer and information sciences Function (mathematics) Edge (geometry) 01 natural sciences Graph Combinatorics 010201 computation theory & mathematics Simple (abstract algebra) 0101 mathematics Undirected graph MathematicsofComputing_DISCRETEMATHEMATICS Mathematics |
Zdroj: | ITM Web of Conferences, Vol 36, p 03004 (2021) |
ISSN: | 2271-2097 |
DOI: | 10.1051/itmconf/20213603004 |
Popis: | LetG= (V, E)be a finite, simple and undirected graph with a vertex setVand an edge setE. An edge irregular totalk-labelling is a functionf : V ᴗE → {1,2,…,k}such that for any two different edgesxyandx’y’inE, their weights are distinct. The weight of edgexyis the sum of label of edgexy, labels of vertexxand of vertexy. The minimumkfor which the graphGadmits an edge irregular totalk-labelling is called the total edge irregularity strength ofG, denoted bytes(G). We have determined the total edge irregularity strength of book graphs, double book graphs and triple book graphs. In this paper, we show the exact value of the total edge irregularity strength of quadruplet book graphs and quintuplet book graphs. |
Databáze: | OpenAIRE |
Externí odkaz: |