Long-time asymptotics for a 1D nonlocal porous medium equation with absorption or convection
Autor: | Yanghong Huang, Filomena Feo, Bruno Volzone |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Convection
nonlocal porous medium equation Mathematics(all) General Mathematics Applied Mathematics 010102 general mathematics 01 natural sciences Molecular physics 010101 applied mathematics Long-time asymptotics 0101 mathematics Absorption (electromagnetic radiation) Porous medium Mathematics entropy methods |
Zdroj: | Feo, F, Huang, Y & Volzone, B 2019, ' Long-time asymptotics for a 1D nonlocal porous medium equation with absorption or convection ', Communications in Contemporary Mathematics . https://doi.org/10.1142/S0219199719500159 |
Popis: | In this paper, the long-time asymptotic behaviors of one-dimensional porous medium equations with a fractional pressure and absorption or convection are studied. In the parameter regimes when the nonlocal diffusion is dominant, the entropy method is adapted to derive the exponential convergence of relative entropy of solutions in similarity variables. |
Databáze: | OpenAIRE |
Externí odkaz: |