Multilayer capsules: a promising microencapsulation system for transplantation of pancreatic islets
Autor: | Stephan Schneider, Rainer Pommersheim, Jürgen Beyer, Peter J. Feilen, Simon Preuss, Svend Berger, Viola Slotty, Daniel Kampfner |
---|---|
Rok vydání: | 2001 |
Předmět: |
Transplantation
Heterotopic Materials science Compressive Strength Biocompatibility Alginates Drug Compounding Acrylic Resins Islets of Langerhans Transplantation Biophysics Biocompatible Materials Bioengineering Permeability Rats Sprague-Dawley Biomaterials chemistry.chemical_compound Biopolymers Glucuronic Acid Materials Testing medicine Animals Polyethyleneimine Polylysine Particle Size Muscle Skeletal Acrylic resin Cells Cultured Hexuronic Acids Pancreatic islets Biomaterial Capsule Prostheses and Implants Fibrosis Microspheres Rats Quaternary Ammonium Compounds Transplantation medicine.anatomical_structure Membrane chemistry Rats Inbred Lew Mechanics of Materials Carboxymethylcellulose Sodium visual_art Ceramics and Composites visual_art.visual_art_medium Female Polyethylenes Biomedical engineering |
Zdroj: | Biomaterials. 22:1961-1970 |
ISSN: | 0142-9612 |
DOI: | 10.1016/s0142-9612(00)00380-x |
Popis: | In 1980, Lim and Sun introduced a microcapsule coated with an alginate/polylysine complex for encapsulation of pancreatic islets. Characteristic to this type of capsule is, that it consists of a plain membrane which is formed during a single procedural step. With such a simple process it is difficult to obtain instantly a membrane optimized with respect to all the properties requested for islet transplantation. To overcome these difficulties, it is recommended to build up the membrane in several consecutive steps, each optimized for a certain property. In this study, we have analysed such a multilayer microcapsule for the encapsulation of pancreatic islets. Therefore, empty and islet containing alginate beads were coated with alternating layers of polyethyleneimine, polyacrylacid or carboxymethylcellulose and alginate. By scanning electron microscopy the thickness of the covering multilayer-membrane was estimated to be less than 800 nm by comparison with an apparatus scale. Ellipsometric measurements showed that the membrane thickness is in the range of 145 nm. Neither the encapsulation procedure, nor the membrane-forming step did impede the stimulatory response of the islets. The encapsulation even lead to a significantly better stimulatory response of the encapsulated islets during week three and five of cell culture. Furthermore, the multilayer-membrane did not deteriorate the biocompatibility of the transplanted microcapsules, allowing an easy tuning of the molecular cut-off and the mechanical stability depending on the polycation-polyanion combination used. The multilayer membrane capsule has obvious advantages compared to a one-step encapsulation procedure. These beads guarantee a high biocompatibility, a precisely adjusted cut-off, an optimal insulin-response and high mechanical stability although the membrane is only 145 nm thick. |
Databáze: | OpenAIRE |
Externí odkaz: |