Numerical Approximation of a System of Hamilton–Jacobi–Bellman Equations Arising in Innovation Dynamics

Autor: Banas, Lubomir, Dawid, Herbert, Randrianasolo, Tsiry Avisoa, Storn, Johannes, Wen, Xingang
Rok vydání: 2022
Předmět:
Zdroj: Journal of Scientific Computing. 92
ISSN: 1573-7691
0885-7474
DOI: 10.1007/s10915-022-01892-x
Popis: We consider a system of fully nonlinear partial differential equations that corresponds to the Hamilton–Jacobi–Bellman equations for the value functions of an optimal innovation investment problem of a monopoly firm facing bankruptcy risk. We compare several algorithms for the numerical solution of the considered problem: the collocation method, the finite difference method, WENO method and the adaptive finite element method. We discuss implementation issues for the considered schemes and perform numerical studies for different model parameters to assess their performance.
Databáze: OpenAIRE