Assessment of Struvite as an Alternative Sources of Fertilizer-Phosphorus for Flood-Irrigated Rice
Autor: | Kristofor R. Brye, Niyi S. Omidire, Leah English, Ranjan Parajuli, Laszlo Kekedy-Nagy, Ruhi Sultana, Jennie Popp, Greg Thoma, Trenton L. Roberts, Lauren F. Greenlee |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Renewable Energy
Sustainability and the Environment chemically precipitated struvite electrochemically precipitated struvite Arkansas life cycle analysis economic analysis rice production plant nutrients Geography Planning and Development Building and Construction Management Monitoring Policy and Law |
Zdroj: | Sustainability; Volume 14; Issue 15; Pages: 9621 |
ISSN: | 2071-1050 |
DOI: | 10.3390/su14159621 |
Popis: | Phosphorus (P) recovery from wastewaters as struvite (MgNH4PO4·6H2O) may be a viable alternative fertilizer-P source for agriculture. The objective of this study was to evaluate the economic and environmental implications of struvite as a fertilizer-P source for flood-irrigated rice (Oryza sativa) relative to other commonly used commercially available fertilizer-P sources. A field study was conducted in 2019 and 2020 to evaluate the effects of wastewater-recovered struvite (chemically precipitated struvite (CPST) and electrochemically precipitated struvite (ECST)) on rice yield response in a P-deficient, silt–loam soil in eastern Arkansas relative to triple superphosphate, monoammonium and diammonium phosphate, and rock phosphate. A life cycle assessment methodology was used to estimate the global warming potentials associated with rice produced with the various fertilizer-P sources. Life cycle inventory data were based on the field trials conducted with and without struvite application for both years. A partial budget analysis showed that, across both years, net revenues for ECST and CPST were 1.4 to 26.8% lower than those associated with the other fertilizer-P sources. The estimated greenhouse gas emissions varied between 0.58 and 0.70 kg CO2 eq kg rice−1 from CPST and between 0.56 and 0.81 kg CO2 eq kg rice−1 from ECST in 2019 and 2020, respectively, which were numerically similar to those for the other fertilizer-P sources in 2019 and 2020. The similar rice responses compared to commercially available fertilizer-P sources suggest that wastewater-recovered struvite materials might be an alternative fertilizer-P-source option for flood-irrigated rice production if struvite can become price-competitive to other fertilizer-P sources. |
Databáze: | OpenAIRE |
Externí odkaz: |