Non-linear deformations of porous elastic solids
Autor: | Dorin Ieşan, Ramón Quintanilla |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya. GRAA - Grup de Recerca en Anàlisi Aplicada |
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
Curvilinear coordinates
Cuboid Equations Applied Mathematics Mechanical Engineering Mathematical analysis Constitutive equation Isotropy Torsion (mechanics) Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC] Física::Termodinàmica [Àrees temàtiques de la UPC] Equacions constitutives Elastòmers -- Proves Nonlinear system Classical mechanics Mechanics of Materials Ordinary differential equation Compressibility Teories no-lineals Mathematics Flexure 76 Fluid mechanics::76A Foundations constitutive equations rheolog [Classificació AMS] |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Recercat. Dipósit de la Recerca de Catalunya instname |
Popis: | This paper is concerned with the non-linear theory of porous elastic bodies. First, we present the basic equations in general curvilinear coordinates. The constitutive equations for porous elastic bodies with incompressible matrix material are derived. Then, the equilibrium theory is investigated. An existence result within the one-dimensional theory is presented. The theory is applied in order to study the torsion of an isotropic circular cylinder and the flexure of a cuboid made of an anisotropic material. It is shown that the equations of equilibrium reduce to a single ordinary differential equation governing an unknown function which characterizes the aforementioned deformations. |
Databáze: | OpenAIRE |
Externí odkaz: |