Strong edge-coloring of 2-degenerate graphs

Autor: Gexin Yu, Rachel Yu
Rok vydání: 2023
Předmět:
DOI: 10.48550/arxiv.2301.12924
Popis: A strong edge-coloring of a graph $G$ is an edge-coloring in which every color class is an induced matching, and the strong chromatic index $\chi_s'(G)$ is the minimum number of colors needed in strong edge-colorings of $G$. A graph is $2$-degenerate if every subgraph has minimum degree at most $2$. Choi, Kim, Kostochka, and Raspaud (2016) showed $\chi_s'(G) \leq 5\Delta +1$ if $G$ is a $2$-degenerate graph with maximum degree $\Delta$. In this article, we improve it to $\chi_s'(G)\le 5\Delta-\Delta^{1/2-\epsilon}+2$ when $\Delta>4^{1/(2\epsilon)}$ for any $0
Comment: 4 pages
Databáze: OpenAIRE