Strong edge-coloring of 2-degenerate graphs
Autor: | Gexin Yu, Rachel Yu |
---|---|
Rok vydání: | 2023 |
Předmět: | |
DOI: | 10.48550/arxiv.2301.12924 |
Popis: | A strong edge-coloring of a graph $G$ is an edge-coloring in which every color class is an induced matching, and the strong chromatic index $\chi_s'(G)$ is the minimum number of colors needed in strong edge-colorings of $G$. A graph is $2$-degenerate if every subgraph has minimum degree at most $2$. Choi, Kim, Kostochka, and Raspaud (2016) showed $\chi_s'(G) \leq 5\Delta +1$ if $G$ is a $2$-degenerate graph with maximum degree $\Delta$. In this article, we improve it to $\chi_s'(G)\le 5\Delta-\Delta^{1/2-\epsilon}+2$ when $\Delta>4^{1/(2\epsilon)}$ for any $0 Comment: 4 pages |
Databáze: | OpenAIRE |
Externí odkaz: |