Rapid In Situ Ligand-Exchange Process Used to Prepare 3D PbSe Nanocrystal Superlattice Infrared Photodetectors
Autor: | Xiaojie Xu, Sean Keuleyan, En Ju Cho, Kyoung E. Kweon, Christine A. Orme, April M. Sawvel |
---|---|
Rok vydání: | 2021 |
Předmět: |
Materials science
business.industry Ligand Superlattice Photodetector Nanoparticle 02 engineering and technology General Chemistry 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences 0104 chemical sciences Nanomaterials Biomaterials chemistry.chemical_compound Responsivity chemistry Nanocrystal Optoelectronics General Materials Science 0210 nano-technology business Lead selenide Biotechnology |
Zdroj: | Small (Weinheim an der Bergstrasse, Germany). 17(25) |
ISSN: | 1613-6829 |
Popis: | Colloidal semiconductor nanocrystals are important building blocks for low-cost, solution-processed electronic devices with tunable functionalities. Considerable progress is made in improving charge transport through nanocrystal films by exchanging long insulating ligands with shorter passivating ligands. To take full advantage of this strategy, it is equally important to fabricate close-packed structures that reduce the average interparticle spacing. Yet it remains a challenge to retain long-range, close-packed order after ligand exchange. Here, a novel one-step in situ ligand-exchange method is demonstrated that enables rapid (5 min) ligand exchange of nanocrystal films, which are more than 50 layers thick. Using this simple and efficient method, it is shown that the face-centered cubic ordering of 500 nm thick PbSe nanocrystal films is retained after ligand exchange from oleic acid to benzoic acid. Moreover, it is demonstrated that PbSe nanocrystal photodetectors with a well-ordered structure have superior optoelectronic properties compared to disordered films; ordered films have a 16× higher responsivity of ≈0.25 A W-1 at 1 V and a 2× faster response time. As far as it is known, this is the first report to realize a rapid one-step ligand exchange through a thick superlattice film with retention of long-range order. |
Databáze: | OpenAIRE |
Externí odkaz: |