Separating the wheat from the chaff: a prioritisation pipeline for the analysis of metabolomics datasets
Autor: | Rainer Breitling, Eriko Takano, Andris Jankevics, Roel J. Vonk, Maria Elena Merlo, Marcel P. de Vries |
---|---|
Přispěvatelé: | Bioinformatics, Faculteit Medische Wetenschappen/UMCG, Groningen Biomolecular Sciences and Biotechnology, Host-Microbe Interactions |
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
Analyte
Computer science Sample (material) Pipeline (computing) Endocrinology Diabetes and Metabolism Biomedicine general Clinical Biochemistry CHROMATOGRAPHY Orbitrap STREPTOMYCES-COELICOLOR A3(2) Biochemistry law.invention Metabolomics Liquid chromatography–mass spectrometry law Metabolome Biomarker discovery LC-MS DATA Chromatography Life Sciences Metabolite identification Cell Biology LC-MS MASS-SPECTROMETRY DATA REDUCTION Biochemistry general Molecular Medicine Original Article Biological system Developmental Biology |
Zdroj: | Metabolomics Metabolomics, 8(1), S29-S36. SPRINGER |
ISSN: | 1573-3882 |
Popis: | Liquid Chromatography Mass Spectrometry (LC-MS) is a powerful and widely applied method for the study of biological systems, biomarker discovery and pharmacological interventions. LC-MS measurements are, however, significantly complicated by several technical challenges, including: (1) ionisation suppression/enhancement, disturbing the correct quantification of analytes, and (2) the detection of large amounts of separate derivative ions, increasing the complexity of the spectra, but not their information content. Here we introduce an experimental and analytical strategy that leads to robust metabolome profiles in the face of these challenges. Our method is based on rigorous filtering of the measured signals based on a series of sample dilutions. Such data sets have the additional characteristic that they allow a more robust assessment of detection signal quality for each metabolite. Using our method, almost 80% of the recorded signals can be discarded as uninformative, while important information is retained. As a consequence, we obtain a broader understanding of the information content of our analyses and a better assessment of the metabolites detected in the analyzed data sets. We illustrate the applicability of this method using standard mixtures, as well as cell extracts from bacterial samples. It is evident that this method can be applied in many types of LC-MS analyses and more specifically in untargeted metabolomics. |
Databáze: | OpenAIRE |
Externí odkaz: |