One-exact approximate Pareto sets

Autor: Arne Herzel, Cristina Bazgan, Clemens Thielen, Stefan Ruzika, Daniel Vanderpooten
Přispěvatelé: Department of Mathematics, University of Kaiserslautern, Technische Universität Kaiserslautern (TU Kaiserslautern), Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Fachbereich Mathematik [Kaiserslautern]
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Journal of Global Optimization
Journal of Global Optimization, Springer Verlag, 2021, 80 (1), pp.87-115. ⟨10.1007/s10898-020-00951-7⟩
ISSN: 0925-5001
1573-2916
DOI: 10.1007/s10898-020-00951-7⟩
Popis: Papadimitriou and Yannakakis (Proceedings of the 41st annual IEEE symposium on the Foundations of Computer Science (FOCS), pp 86–92, 2000) show that the polynomial-time solvability of a certain auxiliary problem determines the class of multiobjective optimization problems that admit a polynomial-time computable $$(1+\varepsilon , \dots , 1+\varepsilon )$$ ( 1 + ε , ⋯ , 1 + ε ) -approximate Pareto set (also called an $$\varepsilon $$ ε -Pareto set). Similarly, in this article, we characterize the class of multiobjective optimization problems having a polynomial-time computable approximate $$\varepsilon $$ ε -Pareto set that is exact in one objective by the efficient solvability of an appropriate auxiliary problem. This class includes important problems such as multiobjective shortest path and spanning tree, and the approximation guarantee we provide is, in general, best possible. Furthermore, for biobjective optimization problems from this class, we provide an algorithm that computes a one-exact $$\varepsilon $$ ε -Pareto set of cardinality at most twice the cardinality of a smallest such set and show that this factor of 2 is best possible. For three or more objective functions, however, we prove that no constant-factor approximation on the cardinality of the set can be obtained efficiently.
Databáze: OpenAIRE