Existence of positive solutions of discrete third-order three-point BVP with sign-changing Green’s function
Autor: | Weiwei Tian, Youji Xu, Chenghua Gao |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Algebra and Number Theory
Functional analysis Applied Mathematics lcsh:Mathematics Sign-changing Green’s function Fixed point Sign changing lcsh:QA1-939 Combinatorics symbols.namesake Third order Integer Green's function symbols Discrete third-order three-point boundary value problem Analysis Positive solutions Cone Mathematics |
Zdroj: | Advances in Difference Equations, Vol 2019, Iss 1, Pp 1-19 (2019) |
ISSN: | 1687-1847 |
Popis: | Consider positive solutions and multiple positive solutions for a discrete nonlinear third-order boundary value problem $$ \textstyle\begin{cases} \Delta ^{3}u(t-1)=a(t)f(t,u(t)), \quad t\in [1,T-2]_{\mathbb{Z}},\\ \Delta u(0)=u(T)=0,\qquad \Delta ^{2} u(\eta )-\alpha \Delta u(T-1)=0, \end{cases} $$ which has the sign-changing Green’s function. Here $T>8$ is a positive integer, $[1,T-1]_{\mathbb{Z}}=\{1,2,\dots ,T-2\}$ , $\alpha \in [0, \frac{1}{T-1})$ , $a:[0,T-2]_{\mathbb{Z}}\to (0,+\infty )$ , $f:[1,T-2]_{ \mathbb{Z}}\times [0,\infty )\to [0,\infty )$ is continuous. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |