Symmetric projected entangled-pair states analysis of a phase transition in coupled spin- 1/2 ladders
Autor: | Juraj Hasik, Glen Bigan Mbeng, Sylvain Capponi, Federico Becca, Andreas M. Läuchli |
---|---|
Přispěvatelé: | Fermions Fortement Corrélés (LPT) (FFC), Laboratoire de Physique Théorique (LPT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE30-0025,TNSTRONG,Méthodes de réseaux de tenseurs pour la matière quantique fortement corrélée(2016), ANR-18-CE30-0026,TNTOP,Classification et réalisation de phases topologiques dans des systèmes fortement corrélés: méthodes de réseaux de tenseurs(2018) |
Předmět: | |
Zdroj: | Phys.Rev.B Phys.Rev.B, 2022, 106 (12), pp.125154. ⟨10.1103/PhysRevB.106.125154⟩ |
DOI: | 10.1103/PhysRevB.106.125154⟩ |
Popis: | Infinite projected entangled-pair states (iPEPS) have been introduced to accurately describe many-body wave functions on two-dimensional lattices. In this context, two aspects are crucial: the systematic improvement of the {\it Ansatz} by the optimization of its building blocks, i.e., tensors characterized by bond dimension $D$, and the extrapolation scheme to reach the "thermodynamic" limit $D \to \infty$. Recent advances in variational optimization and scaling based on correlation lengths demonstrated the ability of iPEPS to capture the spontaneous breaking of a continuous symmetry in phases such as the antiferromagnetic (N\'eel) phase with high fidelity, in addition to valence-bond solids which are already well described by finite-$D$ iPEPS. In contrast, systems in the vicinity of continuous quantum phase transitions still present a challenge for iPEPS, especially when non-abelian symmetries are involved. Here, we consider the iPEPS Ansatz to describe the continuous transition between the (gapless) antiferromagnet and the (gapped) paramagnet that exists in the $S=1/2$ Heisenberg model on coupled two-leg ladders. In particular, we show how accurate iPEPS results can be obtained down to a narrow interval around criticality and analyze the scaling of the order parameter in the N\'eel phase in a spatially anisotropic situation. Comment: 9 pages, 7 figures, source code available at https://github.com/jurajHasik/peps-torch |
Databáze: | OpenAIRE |
Externí odkaz: |