Classical BV formalism for group actions

Autor: Alexander Schenkel, Pavel Safronov, Marco Benini
Rok vydání: 2021
Předmět:
ISSN: 0219-1997
1793-6683
DOI: 10.48550/arxiv.2104.14886
Popis: We study the derived critical locus of a function $f:[X/G]\to \mathbb{A}_{\mathbb{K}}^1$ on the quotient stack of a smooth affine scheme $X$ by the action of a smooth affine group scheme $G$. It is shown that $\mathrm{dCrit}(f) \simeq [Z/G]$ is a derived quotient stack for a derived affine scheme $Z$, whose dg-algebra of functions is described explicitly. Our results generalize the classical BV formalism in finite dimensions from Lie algebra to group actions.
Comment: v3: Final version accepted for publication in Communications in Contemporary Mathematics
Databáze: OpenAIRE